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1 Introduction

This document describes the Kepler astrophysical positional probabilities (APP) table hosted
at the Exoplanet Archive1. This table lists the stars with the highest probability of being
co-located with the source of an observed transit, as well as the probability of the transit
being on an unknown background source. The position of the transit signal source relative
to the target star is found in the KOI tables at the Exoplanet Archive. These probabilities
measure how well a star’s location matches the location of the transit signal – they do not
measure the probability that the transit signal is consistent with a planet orbiting that star.

For each star known to be near a Kepler Object of Interest (KOI), we compute the relative
probability that the star is co-located with the transit source on the sky. We also compute the
probability that the transit source is due to an unknown background source, relative to the
probability for the known stars. These probabilities are relative in the sense that if one star
has twice the probability of another, then the first star is twice as likely to be co-located with
the transit source. Or if the probability for a star is twice the probability of the background,
then that star is twice as likely to be the source of the transit as an unknown background
source.

For a particular KOI, the relative probability is computed for stars from the catalogs
described in §5 that fall on the pixels associated with that KOI. The APP table reports
those probabilities for the KOI host, for the two stars with the highest probability, one of
which may be the host star, and the background probability.

The relative probability that the transit signal source is co-located with the KOI host star
is of particular interest for exoplanet statistical studies. Derived planet properties depend
critically on the details of the star that the planet orbits, and the planet properties reported
in the Kepler planet candidate tables assume that the planet orbits the KOI host. So the
probability that the transit signal is co-located with the host star, given in the APP table,
provides a measure of the reliability that the derived planet properties are correct. For
example, the probability that a KOI’s transit signal is a planet on the KOI host star can be
computed as P (planet orbiting host) = P (planetary transit)P (transit at location of host),
where P (planetary transit) is the probability that the transit signal is consistent with a
planetary transit (such as the FPP table at the Exoplanet Archive) (Morton, 2012), and
P (transit at location of host) is the relative probability of co-location with the host star
given in the APP table.

The relative probabilities for some KOIs are more reliable than those for other KOIs,
and some KOIs will not have computed proababilities. These probabilities are computed
using the results of centroid analysis of Kepler data as described in §4.1.1. The quality of
the computed probabilities depends on the quality of the centroid data, and when the data
is of low quality, for example when the transit S/N is very low, the resulting probabilities
may be unreliable. The APP table provides a metric measuring the quality of the host star
probability computation, which can be used to exclude unreliable probability computations.
For many KOIs these centroids are unavailable or are known to be invalid, such as when

1http://exoplanetarchive.ipac.caltech.edu
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the KOI host star is saturated or highly crowded. When the centroids are unavailable or
invalid the probabilities are not computed, and the probability computation is declared to
have failed.

The ability of the relative probabilities to distinguish between two known stars is deter-
mined by the accuracy of the underlying centroid data, which is in turn driven by the transit
S/N. In some cases a star will have a relative probability near one while another star 1 arcsec
away will have a probability near zero. In other cases, where the centroid measurements have
lower spatial precision, the stars must be several arcsec apart to have different probabilities.
The smallest distance that can be distinguished is 0.2 arcsec due to an observed centroid
noise floor (see §4.1.3).

A simple alternative a priori probability of the transit signal being co-located with the
target star is provided in the APP table for use in computing statistics when the probability
computation is low quality or has failed completely. This a priori probability is simply the
fraction of KOIs whose transit signals are known to be offset from the KOI host star, which
is a strong function of Galactic latitude (see §5.2). This a priori probability should be used
statistically, and should not be applied to the analysis of individual KOIs.

When the relative probability computation fails only the fields Kepler ID, KOI name and
a priori probability are set.

The APP table has the following structure. Archive variable names are given in paren-
theses.

• Identification parameters:

– Kepler ID (kepid) of the KOI host star.

– KOI name (kepoi name) of the transit being analyzed.

– Period (pp koi period) used in computing the relative probabilities. Not set when
the probability computation fails.

– Epoch (pp koi time0bk) used in computing the relative probabilities. Not set
when the probability computation fails.

– Transit depth (pp koi depth) in ppm used in computing the relative probabilities.
Not set when the probability computation fails.

• Host star probabilities:

– Relative probability that the transit is co-located with the KOI host
star (pp host rel prob), or not set when the relative probability computation fails.

– A priori probability that the transit is co-located with the KOI host star
(pp host prior prob), to be used when the relative probability computation fails.
This is computed for all KOIs.

– Host star relative probability source flag (pp host prior prov). This flag
takes one of the following values:

∗ PROB: The relative probability score is computed using the method de-
scribed in this document.
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∗ MATCH: The host star relative probability is set to zero because this KOI
has been determined to be a period-epoch match and the parent is not among
the known stars used in the relative probability computation (Coughlin et al.,
2014).

∗ FPWG: The relative probability computation failed but the host star relative
probability is set to zero because the Kepler False Positive Working Group has
examined this object and determined that the transit source is not co-located
with the KOI host star.

∗ FAILED: The relative probability computation failed and there is no alter-
native source of relative probabilities.

– Relative probability quality (pp host prior score). This quality value ranges
from 0 to 1, and a value below about 0.3 indicates that the relative probability
computation is likely to be untrustworthy.

• The Two Highest Relative Probability Stars: The two known stars with the
highest probability of being co-located with the transit signal source. There may be
only one known star considered in the probability computation. Several parameters are
given for each star:

– Identifier of the star (pp 1hi starid, pp 2hi starid). This may be a catalog
number or a reference flag

– Star right ascension (pp 1hi ra, pp 2hi ra) in degrees

– Star declination (pp 1hi dec, pp 2hi dec) in degrees

– Star Kepler magnitude (pp 1hi kepmag, pp 2hi kepmag). Depending on the
source of information for this star, the Kepler magnitude uncertainty may be as
large as two magnitudes.

– Relative probability that the transit is co-located with this star
(pp 1hi rel prob, pp 2hi rel prob).

– The modeled transit depth (pp 1hi mod depth, pp 2hi mod depth) in parts per
million that best reproduces the observed transit depth used in the relative prob-
ability computation described in §4.1.2. We do not expect this modeled depth
to be accurate, but we provide it because it can indicate possible planetary-size
transiting objects on stars other than the host star. This modeled depth depends
critically on the accuracy of the catalog used to model the flux around the KOI
host star and may be significantly in error. Therefore depths as large as 3 million
ppm are reported, so the modeled star may have to contribute negative flux in
order to reproduce the observed depth. Stars whose modeled depths are greater
than 3 million ppm are rejected from consideration by the relative probability
computation. The probability computation is itself relatively insensitive to such
large errors.

– Star provenance flag (pp 1hi prob prov, pp 2hi prob prov) indicates the source
of the position and magnitude information for this star.
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• Background Relative Probability (pp unk rel prob): The relative probability that
the transit source is co-located with an unknown background object rather than a
known star, described in §4.2.

• Background Density (pp bkgd density): The modeled density of background sources
from Morton and Johnson (2011) used in the computation of the background relative
probability.

• DV Run Identifier (pp dv run id): The identifier of the Kepler pipeline data vali-
dation (DV) run that produced the centroid analysis used in the relative probability
computation.

The stars considered in the relative probability computation are from several sources. In
the initial APP table release these sources are the Kepler input catalog (Brown et al., 2011)
and the UKIRT catalog (Lawrence et al., 2007). The source for a particular star is denoted
by “KIC” or “UKIRT” in their ID, followed by the catalog identifier (called “source ID” in
the UKIRT catalog)2.

Every KOI in the APP table that has a successful relative probability computation (Host
star relative probability source flag = PROB) has an APP report giving a table of all stars
that are considered in the relative probability computation. Each report also has a figure per
star, showing its position relative to the target star and, when possible, contours showing the
observed and modeled position distributions described in §4.1.3. These reports are linked
from the KOI’s entry in the APP table.

The rest of this document describes the computation of the astrophysical position prob-
abilities. §2 introduces and motivates the basic approach. In §3 we describe how probability
is derived from likelihood via Bayesian hypothesis testing, and §4 describes the implemen-
tation. Specifically, §4.1.1 summarizes how transit locations are computed from the PRF-fit
technique. §4.1.2 describes how transits are modeled on each known star. §4.1.3 derives
the likelihoods from the modeled and observed data via smooth bootstrap techniques, with
mathematical details given in appendix A. The likelihood of the background is treated in
§4.2. Results are given in §5, starting with a discussion of where the probability computation
is unreliable. §5.3 illustrates the current method with a few examples.

2 A Probabilistic Approach to Background False Pos-

itive Identification

The Kepler Mission detects transiting exoplanets as well as background false positives that
are observationally separated from the target star (Koch et al., 2010). The most common
method for identifying background false positives is deriving the transit source location from
various centroid techniques, and flagging a KOI as a false positive if its transit source location
is more than 3σ from the target star (Bryson et al., 2013). Using the 3σ threshold makes

2For instructions accessing the UKIRT catalog, see http://keplergo.arc.nasa.gov/ToolsUKIRT.shtml.
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it very unlikely that a transit signal on the target star will be misidentified as being on a
background source. This 3σ threshold has been used to identify offset false positives in the
KOI tables at the Exoplanet Archive (Burke et al., 2014; Mullally et al., 2015; Coughlin et
al., 2015). This threshold is, however, somewhat crude and has the following weaknesses:

• Methods that measure centroids are subject to unknown systematic biases.

• When there are one or more known field stars within 3σ of the target star, this threshold
provides no information about whether these field stars are consistent with the data.

• The reliability of the claim that the transit signal is on the target star is interestingly
different when the measured signal source position is, for example, 1σ vs. 2.8σ from
the target star, but both cases pass the threshold.

• The rate of background binaries depends strongly on Galactic latitude (Bryson et al.,
2013), but this is not reflected in the threshold.

Generally speaking, there is more information available about the location of a transit signal
than a single position and a 3σ circle. This paper presents an analysis of the position of
transit signals measured by Kepler that uses this additional information to compute the
probability that the transit source is on a known star. These probabilities often provide
more insight than the 3σ approach.

Several methods are used by the Kepler Mission to identify background false positives
by determining that the observed position of the transit signal is not consistent with the
target star position, as described in Bryson et al. (2013). In this paper we concentrate on
the PRF-fit difference image technique (summarized in §4.1), which is the most robust and
provides the highest precision. This method measures the position of a transit signal relative
to the target star for each Kepler observational quarter via averaging pixel flux values across
all transits in that quarter. These measurements are subject to various systematic errors,
in addition to photometric shot noise, which results in quarter-to-quarter variations of the
measured centroid position. Averaging individual transits within a quarter is possible because
Kepler’s exceptional pointing stability means that each transit’s flux variations stay on the
same pixels. Across quarters, however, the stars fall on different pixels, preventing averaging
at the pixel level.

The offset of the transit signal from the target star is estimated via an average across
quarters of each quarter’s offset measurement. Bryson et al. (2013) describes how this average
is computed as a χ2 minimizing fit. This average, however, may not represent the true
location of the transit source. Quarter-to-quarter systematics produce scatter in the quarterly
position measurements, which can be thought of as a sampling of an unknown distribution
of positions. The best estimate of the transit source location is given by the average of
this unknown underlying distribution. The statistical bootstrap is an effective method of
producing a distribution of averages of the measured quarterly transit location relative to
the target star. The traditional bootstrap method provides the distribution of averages
as a set of discrete points. We convert these points to a continuous distribution with the
smooth bootstrap technique, which uses kernel density estimation techniques. We produce a
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continuous distribution of average observed positions Do (x, y) for the transit location and,
via modeling of the transit on each star s, continuous modeled distributions Ds (x, y). The
models are based on stellar catalogs, observed transit parameters, the effective PSF of the
Kepler instrument, and known noise sources as described in §4.1. We consider the degree
of overlap of these distributions as a measure of the likelihood that a transit on star s is
consistent with the observed transit location. We define the likelihood that the transit is on
star s as the integral over the product of the distributions: Ls =

∫
Do (x, y)Ds (x, y) dx dy.

Because Do and Ds are densities Ls has units of per square arcsecond.
We compare the likelihood Ls that the transit is on star s with the likelihood Lt that the

transit is on star t by computing the ratio Hst = Ls

Lt
. All stars known to fall on the pixels

collected for the target star are considered, as well as an unknown background. Similar to
the treatment in Gregory (2010), we convert the hypothesis ratios Hst into probabilites in
§3.

This modeling approach addresses the above described weaknesses of the 3σ threshold
approach in several ways:

• Systematic crowding bias is accounted for, so long as that crowding is due to known
stars.

• A continuous probability estimate more clearly describes borderline cases such as when
there are stars within 3σ of the target star.

• The background binary density is accounted for so, for example, KOIs at low Galactic
latitude are more likely to be due to background objects.

3 From Likelihood to Probability

Hypothesis testing considers the ratio Hst = Ls

Lt
, where Ls was defined in §2. Hypothesis s is

considered more likely than hypothesis t if Hst > 1.
The hypotheses ratios satisfy Hst = H−1

ts , so there is a large amount of redundancy among
the various Hst. In particular, thinking of Hst as a matrix for bookkeeping purposes, any
element can be expressed in terms of the elements of a specified column. For example, we
can express any of the Hst in terms of the first column Hs1:

Hst =
Ls
Lt

=
Ls
L1

L1

Lt
= Hs1H1t =

Hs1

Ht1

.

We eliminate this redundancy and convert each column into a set of relative probabilities by
normalizing each column by its sum: for each column t,

Hst → Ĥst ≡
Hst∑
wHwt

=
Ls
Lt

1∑
w
Lw

Lt

=
Ls∑
w Lw

. (1)

These normalized hypothesis ratios Ĥst are independent of column: Ĥst = Ĥsw for any t and
w, and

∑
i Ĥst = 1. So we can define the probability of hypothesis s relative to the other
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hypotheses as Rs = Ls∑
w Lw

. Rw can be interpreted as a probability because 0 ≤ Rs ≤ 1 and∑
sRs = 1.

4 Implementation

4.1 Modeling the Transit Signal on a Known Star

4.1.1 Measuring the Location of a Transit Source in the Kepler Pipeline

To set the context for how the transit signals are modeled and the resulting positions are
measured, we briefly summarize how observed transit signal positions are measured relative
to the target star using the PRF-fit difference image method. For details see Bryson et al.
(2013).

An observed transit signal associated with a target star is identified and characterized
from the flux light curve obtained by summing the pixels in an optimal photometric aperture
around that target star (Jenkins et al., 2010). This photometric aperture is a subset of a
larger pixel mask collected for each target star (Bryson et al., 2010b). For each quarter that
contains transits, the in-transit cadences are identified. All pixels associated with this target
star are then averaged over the in-transit cadences, creating the average in-transit image.
Cadences on either side of each transit in a quarter are similarly used to create an average
out-of-transit image. Subtracting the in-transit image from the out-of-transit image creates
the difference image for each quarter. Assuming that the transit signal is the only source
of flux variation between the in- and out-of-transit images, the difference image provides a
direct image of the transit source. The location of the transit source is measured by fitting a
Pixel Response Function (PRF) model (Bryson et al., 2010a) to the difference image. Given
a star’s position and magnitude, the PRF provides the flux in each pixel due to that star, so a
PRF fit is the determination of the star position for which the PRF-modeled flux distribution
best matches the pixel values. The PRF fit provides a formal propagated uncertainty based
on the input pixel value uncertainties. These quarterly uncertainties do not include the
systematics described below.

The quarterly offset of the transit source from the target star is obtained by subtracting
the position of the target star from the position of the transit source obtained from the
PRF-fit position to the difference image. The uncertainty of this offset is computed via
standard propagation of errors. The position of the target star is obtained from either the
catalog position of the target star or from a similar PRF fit to the out-of-transit image.
Using the PRF fit to the out-of-transit image is preferred because systematic PRF fit error
due to inaccuracies in the PRF model are largely common to both the difference image and
out-of-transit fits and therefore cancel out. Using the PRF fit to the out-of-transit image
assumes, however, that the target star is well-isolated so that this fit position gives the actual
position of the target star. Crowding due to background stars will introduce a bias into the
out-of-transit PRF fit position that is typically not present in the difference image. This
introduces a crowding bias into the measurement of the transit source offset relative to the
target star. One of the motivations for the work in this paper is to estimate this crowding
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bias for each target star. In extreme cases when there is another star of comparable or greater
brightness than the target star, the PRF fit will often give the position of the nearby star.
In this case the out-of-transit PRF fit will be invalid. We do not include target stars in the
analysis described in this paper when the out-of-transit PRF fit gives a target star location
that is more than two arc seconds from the target star’s catalog location.

The PRF fit to the difference image is subject to various other systematics (Christiansen
et al., 2012), particularly due to flux variations other than the transit source, which introduce
noise into the difference image. The result is that the quarterly offsets of the transit signal
location relative to the target star will have some scattered distribution. While this scatter
is statistically near-Gaussian (in particular it is zero-mean) when averaged over all targets,
it may be far from Gaussian for specific target stars.

4.1.2 Modeling Transit Sources

For each target star, in each quarter in which transits occur, we create a synthetic out-of-
transit image for the pixels in that target star’s pixel mask using techniques similar to those
described in Bryson et al. (2010b). Specifically, stellar catalogs and the Kepler PRF model
(Bryson et al., 2010a) are used to add the flux from each star in or near the mask to the
pixels, scaled by that star’s catalog flux. The specific catalog used depends on the star and
is identified in each target star’s APP report.

The uncertainty σOOT
i of each out-or-transit pixel i is taken to be the observed uncer-

tainty σobs
i computed by the Kepler pipeline. To compute the uncertainty of the difference

image pixels, we estimate the non-photometric component of the σOOT
i by subtracting in

quadrature the out-of-transit image’s photometric uncertainty σphot,OOT
i from the observed

pixel uncertainty σobs
i : σpix

i =

√(
σobs
i

)2 −
(
σphot,OOT
i

)2

. Here σphot,OOT
i =

√
fOOT
i /

√
N is

the Poisson photon noise for each pixel with flux fi, scaled by the square root of the number
of out-of-transit cadences N .

For each star s in the target star’s pixel mask, an in-transit image is created by the same
method as for the out-of-transit image, but with the flux of star s scaled by (1− ds) where ds
is the fractional depth of the simulated transit/eclipse on that star. The simulated depth ds
is set separately in each quarter to match the average observed depth dobs in the target star’s
optimal aperture for that quarter. This observed depth is not corrected for dilution by other
flux in the aperture. The simulated depth ds is seeded with the estimate dobs ftarget/

∑
s fs

where ftarget is the flux of the target star and fs is the flux of star s (the target star is included
in the sum over s). When the seed estimate of ds is less than one, the ds that matches dobs

is computed via a nonlinear Levenberg-Marquardt fit (Levenberg, 1944; Marquardt, 1963).
When the seed estimate of ds is greater than one, ds is set equal to the seed value. This
simulated depth is strongly dependent on the accuracy of the Kepler magnitudes of the stars
used to model the flux on the pixels and can be inaccurate. We conservatively allow the
depth to be as great as 3 (implying a reduction in the flux of the star by 300%). Stars
whose modeled depth is greater than 3 are not considered in the probability computation
and should be considered to have probability zero. We do not simulate transits on stars
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outside the pixel mask because centroid measurements for such stars are unreliable and can
be very misleading.

The uncertainty of the modeled difference image pixels is estimated as

√
(σOOT

i )
2

+ (σIT
i )

2
,

where σIT
i =

√(
σphot,IT
i

)2

+
(
σpix
i

)2

is the estimated uncertainty of the in-transit image.

Here σphot,IT
i =

√
f IT
i /
√
N is the Poisson photon noise for each in-transit image pixel with

flux fdiff
i , scaled by the square root of the number of out-of-transit cadences N , and σpix

i

is that pixel’s non-photometric noise estimated from the out-of-transit image as described
above.

The result is that for each quarter we have a simulated out-of-transit image and a col-
lection of in-transit images, with each difference image modeling the transit on a different
known star in the target star’s pixel mask. Each of these images have associated estimated
pixel uncertainties. The reader may ask why we did not build the simulated in-transit image
from the observed out-of-transit image by injecting transit signals in the out-of-transit pixels.
Simulated transits are placed on known stars at their catalog positions, and these catalog
positions often disagree with the actual star positions due to, e. g., catalog error and proper
motion. Constructing the out-of- and in-transit images using the same catalog positions
guarantees that the difference image is consistent with the out-of-transit image, eliminating
the possibility of introducing biases in the modeling.

Similar to the observational data described in §4.1.1, a PRF fit is performed on the
modeled out-of-transit image in each quarter q in which there is a transit, and, for each star
s, on the modeled in-transit images. Taking the quarterly difference between the PRF fits
of the in- and out-of-transit PRF fits gives us observed offsets ∆o,q = (∆RA,∆DEC)o,q with

covariance matrix Σ̃o, and modeled offsets ∆s,q = (∆RA,∆DEC)s,q with covariance matrix Σ̃s

for each star s in the target star’s pixel mask. In the next section we use these quarterly
offsets to estimate distributions of the average observed and modeled offsets.

4.1.3 Computing the Likelihood for Each Star

The observed offsets of a transit signal location from the target star can be thought of as
the sampling of an unknown distribution of offsets. The average of these observed offsets
gives an estimate of the transit source location relative to the target star. If the transits were
observed at a different time, we would get a different sampling of the unknown underlying
distribution, with a different estimate of the transit source location. In this section we
construct a distribution of these average offsets for both the observed and modeled transits.
The overlap of the observed modeled distributions, defined as the integral of the product of
the distributions, is the likelihood that the modeled star is the source of the transit.

For each collection of observed quarterly offsets (∆RA,∆DEC)o,q and modeled quarterly
offsets (∆RA,∆DEC)s,q with their associated uncertainties, we construct a continuous distri-
bution of mean average offsets using the smooth bootstrap technique. The smooth bootstrap
starts with a conventional ensemble of bootstrap averages, and replaces each average value
with a Gaussian distribution, similar to kernel density estimation (Silverman, 1986). Gaus-
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sian distributions are very convenient because products of Gaussians are Gaussians, and
Gaussians lend themselves to explicit integration.

Given Q quarterly offsets ∆o,q or ∆s,q, where Q is the number of quarters with a transit
for the target, the bootstrap method generates an ensemble of N resampled offset sets, each
of length Q, via resampling with replacement. We set N = 500 unless Q < 5, in which
case we include every permutation of the data including repetitions (so N = QQ). Because
Q ≤ 17 this provides a sufficient sampling for the bootstrap estimate. The set of averages
bk, k = 1 . . . N , of each resampled set returned by the bootstrap method provides N average
offsets. Each bk is a two-dimensional vector with components giving the average RA and
Dec offsets for each resampling. We denote the ensemble based on the observed offsets as
bo,k and those based on the modeled offsets for each star s as bs,k.

We smooth the bootstrap ensemble using a normalized two-dimensional Gaussian for each
bootstrap average bk

G (x,bk,Σ) =
1√

det (2πΣ)
exp

[
−1

2
(x− bk)

T Σ−1 (x− bk)

]
(2)

where x and bk are two-dimensional vectors (RA and Dec offsets in our case), and Σ is
the covariance matrix that determines the smoothing, based on the covariance matrix of the
original offsets Σ̃o or Σ̃s depending on whether we are smoothing the observed or modeled
distribution. We choose a two-dimensional generalization of Scott’s rule-of-thumb (Scott,
1992):

Σo = N−
2

d+4 Σ̃o, Σs = N−
2

d+4 Σ̃s (3)

where N is the number of averages in the bootstrap ensemble bk and, in our case, d = 2.
To account for an observed small residual bias in centroid offsets described in Bryson et al.
(2013), a noise floor term of (0.2/3 arcsec)2 is added to the diagonal terms of Σo and Σs.
This imposes a minimum size on the bootstrap distributions.

We define our smooth bootstrap distributions of the observed and modeled average offsets
as

Do (x) =
1

N

N∑
k=1

G (x,bo,k,Σo) , Ds (x) =
1

N

N∑
k=1

G (x,bs,k,Σs) . (4)

With this definition
∫
Do (x) dx =

∫
Ds (x) dx = 1, where dx is the two-dimensional RA and

Dec area element.
We show in appendix A that our desired likelihood for the star s based on the smooth

bootstrap technique is given by

Ls =

∫
Do (x)Ds (x) dx =

1

N2

N∑
k=1

N∑
j=1

G (bo,j,bs,k,Σo + Σs) (5)

From these likelihoods we compute the probability that the star is in the same sky position
as the transit source relative to other known stars as Rs = Ls∑

w Lw
, where the sum includes

the likelihood of the background described in the next section. When Rs < 10−30, we set
Rs = 0 in the table.
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4.2 The Background Likelihood

We model the hypothesis that the transit signal is due to an eclipse on an unknown back-
ground binary star using the background model of Morton and Johnson (2011). This model
varies with target star Kepler magnitude and Galactic latitude. The Kepler magnitude depen-
dence is due to this model’s requirement that the background binaries produce a detectable
transit-like signal when diluted by the target star. For a specific target star’s pixel aperture
this model is sufficiently slowly varying that we can take it as locally constant. We define b
as the model background binary density per square arcsecond, evaluated for the target star.

To estimate b we use Equation (14) and Table 1 from Morton and Johnson (2011). We
note that this table as published has the column values reversed: the absolute values of c0

should be the largest and those of c4 should be the smallest. For the targets modeled in this
paper, b ranges from 1.6×10−6 to 5.1×10−5 background binaries per square arcsecond, with
a median of 1.1× 10−5.

Given b, in order to satisfy the requirement that our distributions are normalized we
define the background distribution as

Dbgd (x) =

{
b, r ≤ 1√

πb

0, r > 1√
πb

(6)

where r =
√
x2 + y2. So Dbgd (x) = b in a circle of radius R0 = 1/

√
πb, is zero outside this

circle, and
∫
Dbgd (x) dx dy = 1. The smallest radius for this circle occurs when b is largest,

where R0 = 79 arcseconds or about 20 Kepler pixels. A 20 pixel radius is larger than the
largest pixel mask for a non-saturated target star, so this normalization is appropriate for
comparison with the normalized Gaussians we use to compute our likelihoods.

The background likelihood is Lbgd =
∫
DbgdDodx, and because b vanishes outside the

circle of radius R0, the product in the integrand vanishes as well. This is plausible because
for any reasonable measurement of the centroid position, Do should essentially vanish outside
a circle that is considerably smaller than 79 arcseconds: the pixel mask for a 12th magnitude
star typically has a radius of about 25 arcseconds. Therefore no information is lost by
imposing a background model that vanishes outside a circle of radius ≥ 79 arcseconds. We
demonstrate this by assuming that Do is a Gaussian with a diagonal covariance matrix with
equal entries, so Do becomes a function of r only. Then the likelihood of the background
hypothesis is

Lbgd =

∫
DbgdDodx =

∫ ∞
0

DbgdDo dr = b

∫ R0

0

Do dr. (7)

Now
∫∞

0
Do dr = 1 and

∫ R0

0
Do dr =

∫∞
0
Do dr −

∫∞
R0
Do dr = 1−

∫∞
R0
Do dr, so

Lbgd = b

(
1−

∫ ∞
R0

Do dr

)
. (8)

If we make the conservative assumption that the uncertainty of Do is 5 arcseconds (see Fig
33 of Bryson et al. (2013)), then

∫∞
R0
Do dr ≈ 10−110, which can be neglected. Because
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this example is computed based on the highest background density and largest reasonable
measurement uncertainty, we can generally take Lbgd = b. While this analysis made various
simplifying assumptions, a more realistic analysis is not expected to significantly change the
results.

5 Results

The purpose of the methods described in this paper is to compute the relative probability
that

• the transit signal source is in the same location as the target star

• the transit source is in the same location as a known star other than the target star

• the transit source is in the background population of unknown stars.

The relative probabilities described in this paper have been computed for identified KOIs
(Coughlin et al., 2015) that have the following properties:

• The Kepler magnitude is dimmer than 10, because PRF fitting breaks down for brighter
targets, which are highly saturated.

• The PRF fit to the observed out-of-transit image, which measures the position of the
target star (see §4.1.1), is within 2 arcsec of the catalog position of the target star.
When this condition is violated, either there is sufficient crowding to invalidate the
centroid data or the target star catalog position is incorrect, invalidating the modeling
behind the relative probability computation.

KOIs not satisfying these criteria are marked “FAILED” in the APP table and no relative
probabilities are available.

For creation of the synthetic scene we use the Kepler Input Catalog (KIC) (Brown et al.,
2011) supplemented by the UKIRT catalog (Lawrence et al., 2007). The UKIRT catalog was
federated by removing stars already in the KIC and estimating Kepler magnitudes from the
UKIRT J magnitudes assuming all stars are on the main sequence. The errors on the UKIRT
Kepler magnitudes can be as large as 2 magnitudes.

Future releases of the FPP table will include stars detected via high-resolution imaging
such as those found by the Kepler Community Follow-up Observing Program (CFOP)3.

5.1 Host Star Relative Probability Quality

There are several ways in which the computed probabilities can be misleading. We concen-
trate on the two most common problem cases:

3https://cfop.ipac.caltech.edu/home/
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• Transits with S/N < 10 often do not have enough signal in each pixel of the difference
image to produce a reliable PRF fit.

• Crowding by bright field stars can invalidate the probability analysis. Removing target
stars that are fit to more than 2 arcsec from their catalog positions removes most of
these cases, but bias may remain in some cases.

We indicate the host star relative probability quality using a numerical score that measures
the likelihood of both of these problems. This score ranges from 0 to 1, and we recommend
trusting the probabilities reported for the target star when this score is about 0.3 or above.
This score is the product of two metrics, each of which is normalized to range from 0 to 1:

• Difference Image Quality which measures how well the transit signal difference
image resembles a star. In each quarter we compute the correlation of the fitted PRF
model with the pixel data (Bryson et al., 2013). The difference image quality metric is
the number of quarters where the correlation is > 0.7 divided by the total number of
quarters in which a transit was observed.

• Local Crowding which compares the flux in the target star’s optimal aperture with
the flux outside the optimal aperture in the star’s pixel mask. When the flux outside
the optimal aperture exceeds that in the optimal aperture by about a factor of two, then
the PRF fit to the out-of-transit image is considered unreliable. The local crowding
metric uses the inverse of this ratio with a non-linear sigmoid function to produce a
crowding score between 0 and 1, with 1 indicating that most of the flux is from the
optimal aperture, and 0.5 indicating that about the same amount of flux is inside the
optimal aperture as outside. This metric is provisional, and we expect improvements
after applying the probability analysis to the results of the Kepler transit injection
study.

5.2 Host Star a priori Probability

When the host star relative probability quality score described in §5.1 is below threshold,
there are several alternatives. When possible, the user should examine the transit data
to make a determination of the quality of the centroid measurements using the concepts in
Bryson et al. (2013). When this is not possible, such as when many targets are being analyzed
for a statistical study, or when examination shows that there is essentially no information on
the transit signal source location, we recommend using the a priori target star probability
values supplied in the table. These are based on the observation that the probability that a
Kepler object of interest is not on the target star depends sensitively on Galactic Latitude
(Bryson et al., 2013). Both the observed offset false positive fraction shown in Figure 1 and
modeling (Morton and Johnson, 2011) indicate such a dependence on Galactic latitude. This
fraction’s dependence on Galactic latitude is relatively insensitive to target star and transit
properties. The a priori target star probability is a fit to the fraction of KOIs that are on
the target star to the total number of KOIs at a given Galactic latitude.
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Figure 1: Blue: The distribution of the fraction of KOIs that have been identified as back-
ground false positives via offsets from the KOI host star as a function of Galactic Latitude.
The error bars show the 1σ Poisson uncertainty. Red: the fit used to compute the KOI host
star a priori probability. The fit is y = 0.775× 10(−0.0556x) where x is the Galactic latitude in
degrees.
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5.3 Examples

The confirmed planet Kepler-11c is shown in Figure 2. In this example the observed centroids
are clustered around the KOI host star KIC 6541920, so the target star is near the center
of the bootstrap distribution of observed averages, shown by the green contours. Modeling
the transit on the target star produces a distribution of averages that is also nearly centered
on the target star. The overlap of the observed and modeled distributions leads to a large
likelihood and a 100% probability that the transit signal is co-located with the target star.

A background false positive, KOI 109.01, associated with a known background star is
shown in Figure 3. In this case the green contours, showing the distribution of observed
averages, is very near the background star KIC 4752452 and very far from the KOI host star
KIC 4752451, indicating that KOI host is unlikely to be the source of the transit signal. The
KOI host star has a probability of zero, while there is a 98.9% relative probability that the
transit source is at the location of KIC 4752452. Because the green observed contours have
only a small overlap with the magenta contours obtained by modeling the transit on KIC
4752452, the background has a probability of 1.1%.

Figure 4 shows the interesting case of KOI-582.01, where an apparent offset in the cen-
troids from the KOI host star turns out to be spurious, caused by centroid bias due to
crowding. This bias is revealed by modeling the transit on the KOI host star KIC 9020160.
The modeled magenta contours show that the expected distribution of averages is offset from
KIC 9020160 in the same direction and distance as the green observed contours. Therefore
the original disposition of KOI-582.01 as an offset false positive because it is more than 3σ
from the target star (shown by the cyan circle) was incorrect.
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Figure 2: Results of the probability analysis for KOI-157.01 (confirmed planet Kepler-11c)
with target star KIC 6541920, Kepler magnitude 13.709. In this example the transit signal
location is strongly consistent with the target star. The distribution of averages of the
observed transit positions Do is rendered as green contours, while the magenta contours
show the distribution Dtarget with the transit modeled on the target star. The target star
is shown as a red asterisk, the black crosshairs are the observed quarterly transit locations,
and the light grey dashed crosshairs are the modeled transit locations. In this example the
modeled transit locations are very tightly clustered so the magenta contours appear as a dot
near the target star. The magenta crosshair and cyan circle show the χ2 average position
and 3σ radius used in conventional planet candidate vetting.
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Figure 3: Results of the probability analysis for KOI-109.01 with target star KIC 4752451,
Kepler magnitude 12.385. In this example the transit signal location is strongly inconsistent
with the target star, and is consistent with the 17th magnitude field star KIC 4752452, shown
by the circled blue asterisk. Top: the transit modeled on the target star KIC 4752451, so
the modeled magenta contours and the observed green contours are very far apart. Bottom:
the transit modeled on KIC 4752452, so the modeled magenta contours are close enough to
overlap with the green observed contours. Though the overlap is small, it is large enough for
a 98.9% probability that the transit is co-located with KIC 4752452, while the background
probability is 1.1%. See Figure 2 for a description of elements of the figure.
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Figure 4: Results of the probability analysis for KOI-582.01 with target star KIC 9020160,
Kepler magnitude 14.808. In this example the transit signal location is more than 3σ away
from the target star, as indicated by the cyan circle offset to the SW. The conclusion that
the transit source is offset from the target star is reinforced by the location of the black
crosshairs showing the quarterly transit offsets. The observed distribution shown by the
green contours is also offset, consistent with the 3σ circle. But the modeled distribution
shown by the magenta contours shows that the distribution of offsets is expected to be offset
in this way from the target star due to crowding bias. Therefore it would be incorrect to
declare this KOI to be a background false positive. See Figure 2 for a description of elements
of the figure.
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Appendix A

We use the notation of §4.1.3. Our desired likelihood for each star s is the integral of the
product

Ls =

∫
Do (x)Ds (x) dx. (9)

The product of two Gaussians is the Gaussian

G (x,bo,j,Σo)G (x,bs,k,Σs) = cj,kG (x,mj,k,Φ) (10)

where

cj,k = G (bo,j,bs,k,Σo + Σs) (11)

mj,k =
(
Σ−1
o + Σ−1

s

)−1 (
Σ−1
o bo,j,+Σ−1

s bs,k
)

Φ =
(
Σ−1
o + Σ−1

s

)−1
.

so

Ls =

∫
Do (x)Ds (x) dx

=
1

N2

∫ N∑
k=1

N∑
j=1

G (x,bo,k,Σo)G (x,bs,j,Σs) dx

=
1

N2

∫ N∑
k=1

N∑
j=1

cj,kG (x,mj,k,Φ) dx

=
1

N2

N∑
k=1

N∑
j=1

cj,k (12)

because
∫
G (x,mj,k,Φ) dx = 1.
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