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Abstract

K2-138 is a moderately bright (V=12.2, K=10.3) main-sequence K star observed in Campaign 12 of the
NASA K2 mission. It hosts five small (1.6–3.3 RÅ) transiting planets in a compact architecture. The periods of
the five planets are 2.35, 3.56, 5.40, 8.26, and 12.76 days, forming an unbroken chain of near 3:2 resonances.
Although we do not detect the predicted 2–5 minute transit timing variations (TTVs) with the K2 timing
precision, they may be observable by higher-cadence observations with, for example, Spitzer or CHEOPS. The
planets are amenable to mass measurement by precision radial velocity measurements, and therefore K2-138
could represent a new benchmark system for comparing radial velocity and TTV masses. K2-138 is the first
exoplanet discovery by citizen scientists participating in the Exoplanet Explorers project on the Zooniverse
platform.
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1. Introduction

The NASA K2 mission (Howell et al. 2014) is in its third
year of surveying the ecliptic plane. The mission uses the
repurposed Kepler Space Telescope to tile the ecliptic and
consists of successive ∼80 day observations of 12×12 degree
regions of sky known as campaigns. Each campaign yields
high-precision, high-cadence calibrated pixel files and time-
series photometry on anywhere from 13000 to 28000 targets,
which are released to the public within three months of the end
of the observing campaign. This deluge of data is immediately
inspected by professional exoplanet hunters, producing rapid
announcements of interesting new planetary systems, e.g., the
recent examples of HD106315 (Crossfield et al. 2017;
Rodriguez et al. 2017) and HD3167 (Vanderburg et al. 2016).

There are many features in time-series data that can be
matched to potential transit signals by signal-processing
algorithms. These features can be either astrophysical in origin
(e.g., pulsating variable stars, eclipsing binaries, flaring stars,
cosmic-ray pixel strikes), or instrumental (e.g., apparent
variations in the brightness in a photometric aperture caused
by spacecraft pointing drift, or by focus drifts in response to the
changing thermal environment). While these artifacts can
confuse automated procedures, the human brain is optimized
for pattern matching and is remarkably good at discriminating
these artifacts from a train of planet transits. This ability is
exploited in information security technology for instance, with
the CAPTCHA algorithm (von Ahn et al. 2003) being a well-
known example. In light curve analysis, humans can readily
recognize the differences in the underlying phenomena causing
the putative signals and identify the transit signals.
This ability, along with the strong interest held by the public

in being involved in the process of scientific discovery, has led
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to the ongoing success of the Planet Hunters23 project (e.g.,
Fischer et al. 2012). Hosted by the Zooniverse platform (Lintott
et al. 2008), the project displays to users the publicly available
Kepler and K2 time-series photometry and asks them to
identify transit-like dips. Inspired by their success, we started
the Exoplanet Explorers24 project in 2017 April. In this project,
we run a signal detection algorithm to identify potential transit
signals in the K2 time-series photometry and ask the users to
sift through the resulting candidates to identify those most
closely resembling planetary transits. Here, we present K2-138,
the first K2 planetary system discovered by the Exoplanet
Explorers project. In Section 2, we describe the K2 data set. We
describe the Exoplanet Explorers project and the identification
of K2-138 in Section 3, and the derivation of the stellar
parameters in Section 4. In Section 5, we describe the analysis
of the planet parameters. Finally, in Section 6 we place the
K2-138 system in context of other high-multiplicity systems
and discuss prospects for future characterization.

2. Observations and Photometric Reduction

K2 data are downlinked from the spacecraft, processed into
calibrated pixel files and photometric time series, and released
to the public via the Mikulski Archive for Space Telescopes
(MAST).25 Unlike the original Kepler mission, the target list is
entirely guest observer driven: all observed targets are
proposed to the project by the community. Campaign 12
(C12), which was observed for 79 days from 2016 December
15 to 2017 March 4, contained the target star TRAPPIST-1
(Gillon et al. 2016, 2017; Luger et al. 2017; Wang et al. 2017).
In order to facilitate rapid analysis of the K2 observations of
TRAPPIST-1, the data were released to the public immediately
after downlink from the spacecraft on 2017 March 9 as raw
pixel files.

We downloaded the raw pixel files from MAST for the
stellar targets that were proposed by K2ʼs large exoplanet
search programs and calibrated these data using the kadenza
software (Barentsen 2017), generating calibrated pixel files.

We then used the publicly available k2phot photometry
code,26 which generates aperture photometry and performs
corrections for the spacecraft pointing jitter using Gaussian
Processes (Rasmussen & Williams 2005), to generate light
curves suitable for searching for periodic transit signals. Using
the publicly available TERRA algorithm27 (Petigura et al.
2013a, 2013b), we generated both a list of potential transiting
planet signals from the detrended light curves and a set of
accompanying diagnostic plots. TERRA identified a total of
4900 candidate transit signals in the C12 stellar data.

3. Transit Identification

For each signal from C12 and the earlier campaigns already
processed, we uploaded a subset of the standard TERRA
diagnostic plots to the Exoplanet Explorers project. The plots
included a phase-folded light curve and a stack of the
individual transit events; users examined these plots and
selected whether the putative signal looked like a true transiting

planet candidate. Figure 1 shows an example set of diagnostic
plots.
On 2017 April 4, the Exoplanet Explorers project was

featured on the Stargazing Live ABC broadcast in Australia.
Between 2017 April 4 01:00 UTC and 2017 April 6 19:48
UTC, the live project received 2,100,643 classifications from
7270 registered Zooniverse classifiers and 7677 not-logged-in
IP addresses. Of these, 130,365 classifications from 4325

Figure 1. The set of diagnostic plots presented on the Exoplanet Explorers
project, for the target K2-138. From top to bottom the four plots are for the
putative signals for K2-138 c, d, e, and f. In each case, the left panel shows the
individual transit events, with an arbitrary vertical offset and alternating color
for visual clarity. The top right panel shows the entire light curve folded at the
period of the putative transit signal. The black points are the original K2 data,
and the yellow circles are binned data. The bottom right panel shows the same
phase-folded light curve, zoomed in on the transit event itself. An initial fitted
planet model is overlaid in blue.

23 www.planethunters.org
24 www.exoplanetexplorers.org
25 https://archive.stsci.edu/kepler/
26 https://github.com/petigura/k2phot
27 https://github.com/petigura/terra
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registered classifiers and 2012 not-logged-in IP addresses were
for candidate signals in the C12 data. C12 candidates received
a median of 26 classifications each; the C12 candidate with
the lowest classification count received 14 classifications, and the
most-classified C12 candidate received 43 classifications. The
classifications were aggregated for each candidate to provide
the fraction of classifiers who indicated they saw a transiting
planet signal.

Of the 4900 potential transiting signals identified in the C12
data, 72 were voted by more than 60% of users as looking like
transiting planet candidates. The dispositions of the full set of
C12 signals are shown in Figure 2; the signals with the highest
confidence are unsurprisingly at shorter periods (with a higher
number of individual events contributing to the signal for the
users to assess) and higher signal-to-noise values. The highly
voted signals were inspected visually and K2-138
(EPIC 245950175) was rapidly identified as a promising
multi-planet system. The initial automated search of the light
curve produced four distinct transiting signatures, each with a
high (>90%) fraction of votes from the participants; the four
diagnostic plots that were voted on are shown in Figure 1.
EPIC245950175 was proposed for observations by four teams,
in Guest Observing Programs 12049, 12071, 12083, and 12122
(PIs Quintana, Charbonneau, Jensen, and Howard). The full,
unfolded light curve of K2-138 is shown in Figure 3. After the
system was flagged by the citizen scientists, additional
examination of the light curve revealed the signature of a fifth
transiting signal, interior to the four signals identified by the
TERRA algorithm and on the same 3:2 resonant chain.
Characterization of the five detected planet signals is detailed in
Section 5.

In addition, two individual transit events were identified
using LcTools (Kipping et al. 2015), shown in Figure 4,
separated by 41.97 days. The transits have consistent depths
and durations, and if confirmed, would correspond to an
additional ∼2.8 RÅ sub-Neptune planet in the K2-138 system,
bringing the total to six planets. Additional observations are

required to secure a third epoch and confirm that the two
transits seen in the K2 data arise from a single planet and are
not individual transits of two similarly sized, longer-period
planets.

4. Stellar Characterization

On 2017 June 1, we obtained a spectrum of K2-138 using
Keck/HIRES, without the iodine cell as is typical of the
precision radial velocity observations. We derive stellar
parameters using SpecMatch (Petigura et al. 2015), given in
Table 1. Following the procedure in Crossfield et al. (2016), we
estimate the stellar radius and mass using the publicly available
isochrones Python package (Morton 2015) and the Dartmouth
stellar evolution models (Dotter et al. 2008). The California
Kepler Survey (CKS; Petigura et al. 2017) finds mass and
radius uncertainty floors for similar spectral types of 6% and
9% respectively, motivated by comparisons between stellar
radii derived using isochrones and spectroscopic para-
meters (as is done here for K2-138) and asteroseismic radii
(Johnson et al. 2017). We therefore adopt these uncertainties on
the mass and radius of K2-138 to incorporate the isochrone
model uncertainties. Additional estimates of the parameters of
K2-138 are available in the Ecliptic Plane Input Catalog (EPIC;
Huber et al. 2016) on the MAST and are consistent with those
from the RAVE spectrum and isochrones. The HIRES/
isochrones parameters and the EPIC parameters are
consistent with a solar-metallicity, main-sequence, early-K
type star at a distance of ∼180 pc when comparing to the color-
temperature relations of Pecaut & Mamjek (2013). We adopt a
spectral type of K1V±1. We measure a logR HK¢ value of
−4.63, indicating a modestly magnetically active star, which
may present a challenge for precision radial velocity measure-
ments of the system.
On 2017 May 31, we obtained a high-resolution image of

K2-138 in K-band using the Altair AO system on the NIRI
camera at Gemini Observatory (Hodapp et al. 2003) under
program GN-2105B-LP-5 (PI Crossfield). We observed at five
dither positions and used the dithered images to remove sky
background and dark current; we then aligned, flat-fielded and
stacked the individual images. The inset in Figure 5 shows the
final stacked image, and the plot shows the detection limits of
the final image. The limits were determined by injecting
simulated sources into the final image, with separation from
K2-138 determined by integer multiples of the FWHM, as in
Furlan et al. (2017). We see no other source of contaminating
flux in the AO image within 4́ , the size of one K2 pixel. In
addition to the AO data, we examine the HIRES spectrum for
evidence of additional stellar lines, following the procedure of
Crossfield et al. (2016). This method is sensitive to secondary
stars that lie within 0. 4´ of the primary star (one half of the slit
width) and that are up to 5mag fainter than the primary star in the
V- and R-bands (Kolbl et al. 2015), complementing the sensitivity
limits of the NIRI observations. We are able to rule out
companions with T 3400 6100 Keff = – andΔ(RV)>10 kms−1.
We further discuss the possibility of the observed periodic signals
originating from a faint star∼14´ away in Section 5.1, but for the
following analysis, we assume the putative planet signals arise
from K2-138.

Figure 2. The distribution of user votes on the C12 candidate transiting planet
signals. All signals received 14 or more votes, and the percentage of “yes”
votes is shown: the small blue dots represent signals for which fewer than 60%
of users voted “yes.” The green stars, yellow + symbols and red circles show
signals for which greater than 60%, 75%, and 90% of users voted “yes.”
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5. Planet Parameters

We analyzed the five transit signals independently in the
K2-138 light curve, using the same modeling, fitting, and
MCMC procedures as described in Crossfield et al. (2016). In
summary, we fit the following model parameters: mid-transit
time (T0); the candidates orbital period and inclination (P and
i); the scaled semimajor axis (Rp/a); the fractional candidate
size (R*/a); the orbital eccentricity and longitude of periastron
(e and ω), the fractional level of dilution (δ) from any other
sources in the aperture; a single multiplicative offset for the
absolute flux level; and quadratic limb-darkening coefficients
(u1 and u2). We explore the posterior distribution using the

emcee software (Foreman-Mackey et al. 2013). We find that
the signals correspond to five sub-Neptune-sized planets
ranging from 1.6 to 3.3 R ;Å the best-fitting transit models are
shown in Figure 6. As a self-consistency check, we note that
the stellar density values derived from the independent transit
fits are consistent across all five planets and also consistent with
the direct calculation from the stellar mass and radius.
All five planets have periods under 13 days, making K2-138

an example of a tightly packed system of small planets. One
particularly interesting aspect to the K2-138 architecture,
discussed further in Section 6, is that each successive pair of
planets is just outside the first-order 3:2 resonance.

5.1. Validation

Lissauer et al. (2012) analyzed the distribution of Kepler
planet candidates and showed that systems with multiple
candidate signals were substantially more likely to be true
planetary systems than false positives. This provides a “multi-
plicity boost” to the statistical validation of candidates in multi-
planet systems. Here, we validated each candidate individually
using the publicly available vespa code,28 which computes the

Table 1
K2-138 Stellar Parameters

EPIC ID 245950175
2MASS ID J23154776-1050590
R.A. (J2000.0) 23:15:47.77
Decl. (J2000.0) −10:50:58.91
V (mag) 12.21
K (mag) 10.305
Spectral type K1V±1
Teff (K) 5378±60
log g (cgs) 4.59±0.07
[Fe/H] 0.16±0.04
R� (R:) 0.86±0.08
M� (M:) 0.93±0.06
Distance (pc)a 183±17
v sin i (km s−1) 2.7±1.5

Note.
a EPIC classification, see Huber et al. (2016) and https://github.com/
danxhuber/galclassify.

Figure 5. Inset: the Gemini/NIRI AO image of K2-138. We detect no additional
sources of flux. Plot: the 5σ contrast limits for additional companions, in
Δmagnitude, are plotted against angular separation in arcseconds; the black
points represent one step in the FWHM resolution of the images.

Figure 3. The time series of the K2 data, with the five-planet transit model shown in blue. The planets of the individual transits are marked with the appropriate letter;
the times of the two transits of the putative planet candidate discussed in Section 3 are shown as “g.” The 5-day gap two-thirds of the way through the campaign was
the result of a spacecraft safe-mode event.

Figure 4. The two transits of the putative 42-day period planet candidate that
fall in the K2 C12 data. The time of the second transit has been offset by 41.97
days to demonstrate the consistency in depth and duration of the two events,
which correspond to a ∼2.8 RÅ planet.

28 https://github.com/timothydmorton/VESPA
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likelihood of various astrophysical false-positive scenarios. We
use as input a photometric exclusion radius of 13´, the K-band
and Kepler magnitudes, and the HIRES stellar parameters. The
results are false-positive probabilities of 0.20%, 0.11%, 0.76%,
0.027%, and 0.24% for planets b, c, d, e, and f, respectively. As
we have multiple candidates orbiting a single star, the “multi-
plicity boost” (and an additional “near-resonance boost”) further

suppresses these FPPs (Lissauer et al. 2012; Sinukoff et al.
2016). Applying the K2 multiplicity boost derived by Sinukoff
et al. (2016), we find final FPPs of 8.3 10 5´ - , 4.6 10 5´ - ,
3.17 10 4´ - , 1.1 10 5´ - , and 1.0 10 4´ - .

Recently, Cabrera et al. (2017) showed that stars within the
Kepler photometry aperture but outside the small area surveyed
by high-resolution imaging were responsible for several falsely
validated planets. Here, we examine the possibility that the five
periodic signals do not arise from the brightest star in the K2
aperture. Given that the signals form an unbroken chain of near
first-order resonances, we consider the possibility that some
number of the signals arise on one star and the remainder on a
star coincident with the line of sight to be unlikely, and
consider the five signals as a related set. The brightest nearby
star is 2MASSJ23154868-1050583, which is ∼14´ from
EPIC245950175, and 5.6mag fainter in the R-band. This star is
shown to the west of EPIC245950175 in Figure 7. Following
from Equation (5) of Ciardi et al. (2015), we find that the putative
planets would be 13.2 times larger if they orbited the fainter target,
increasing to 1.9–4.0 RJ. These would be as large or larger than the
largest planet known to date with a radius measured by the transit
method, WASP-79b with a radius of 2.09±0.14 RJ (Smalley
et al. 2012). Therefore, we conclude that the five putative planets
are extremely unlikely to orbit 2MASSJ23154868-1050583.

6. Discussion

One of the interesting discoveries from the NASA Kepler
mission is the prevalence of compact, highly co-planar, and
often dynamically packed systems of small ( R4< Å) planets
(Latham et al. 2011; Lissauer et al. 2011; Howard et al. 2012;
Fabrycky et al. 2014; Winn & Fabrycky 2015). This has
continued in the K2 mission, including the discoveries of the
K2-3 (Crossfield et al. 2015), K2-37 (Sinukoff et al. 2016), and
K2-72 (Crossfield et al. 2016) systems. Multi-planet systems
are crucial laboratories for testing planetary formation,
migration, and evolution theories. A further interesting subset
of these systems are those demonstrating resonances, or chains

Figure 6. The folded transits of K2-138 b, c, d, e, and f overplotted with the
best-fitting transit model in red. Binned data points are shown in blue. The
planets range in size from 1.57 to 3.29 RÅ.

Figure 7. A 60×60 arcsec image from the SDSS DR7 r-band. The companion
to the west is∼14 arcsec away, and is 5.6 mag fainter than EPIC 245950175 in R.
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of resonances. The five validated planets of K2-138 lie close to
a first-order resonant chain. We find period ratios of 1.513,
1.518, 1.528, and 1.544 for the b–c, c–d, d–e, and e–f pairs,
respectively, just outside the 3:2 resonance. Fabrycky et al.
(2014), examining the large population of multi-transiting
planet systems in the Kepler data, showed that pair-wise period
ratios pile-up just outside of the first- and second-order
resonances. They offer several possible explanations for this,
including gravitational scattering slightly out of resonance by
the additional bodies in the system, or tidal dissipation
preferentially acting to drag the inner planets inward from the
resonance. Lithwick & Wu (2012) and Batygin & Morbidelli
(2013) investigate the suggestion of tidal dissipation as a
mechanism for keeping individual pairs of planets just outward
of the resonance; they note that in systems with more than two
planets, where the planets can inhabit multiple resonances, the
planets can remain close to resonance despite tidal dissipation.
Recently, Ramos et al. (2017) analytically derived the expected
offset from a first-order resonance for a pair of planets due to
Type I migration. Their Figure 3 shows that for periods shorter
than ∼10 days, the resonance period ratio is 1.505–1.525,
depending on the mass of the inner planet and the mass ratio of
the two planets, with higher period ratios expected as the mass
ratio approaches unity. Therefore, it is possible that the K2-138
b–c and c–d pairs may be captured in the 3:2 resonance, but
unlikely that the d–e or e–f pairs are in resonance.

It is illustrative to compare K2-138 to the other known
systems with multiple planets, and to examine whether 3:2
period ratios are common. Figure 8 shows, for the confirmed
multi-planet systems, the distance of each period ratio in the
system from a 3:2 period ratio. K2-138 is the only system with
an unbroken chain of four period ratios near 3:2. There are
seven systems with planets in consecutive 3:2 pairs: Kepler-23
(Ford et al. 2012); Kepler-85 and Kepler-114 (Xie 2013; Rowe
et al. 2014); Kepler-217 (Rowe et al. 2014; Morton et al. 2016);
Kepler-339 and Kepler-402 (Rowe et al. 2014); and Kepler-350
(Rowe et al. 2014; Xie 2014). There are an additional nine
systems with a “broken” chain of 3:2 pairs, i.e., a configuration
like K2-138 but where one planet is missing, or perhaps
undiscovered: GJ 3293 (Astudillo-Defru et al. 2015, 2017);
K2-32 (Dai et al. 2016); Kepler-192 and Kepler-304 (Rowe
et al. 2014; Morton et al. 2016); Kepler-215, Kepler-254,
Kepler-275 and Kepler-363 (Rowe et al. 2014); and Kepler-276
(Rowe et al. 2014; Xie 2014). These systems are highlighted in
red. A small number of systems contain four planets in
different configurations of first-order resonances, also high-
lighted in Figure 8. Kepler-223 is comparable to K2-138: a
compact system of four sub-Neptune-sized planets with periods
shorter than 20 days, in a 3:4:6:8 resonant chain (Rowe
et al. 2014; Mills et al. 2016). In the case of Kepler-223, the
period ratios are much closer to resonance than for K2-138,
with ratios of 1.3333, 1.5021, and 1.3338 for the b–c, c–d, and
d–e pairs respectively. Kepler-223 demonstrates significant
transit timing variations (TTVs), allowing for robust mass
constraints to be placed. Kepler-79 (Jontof-Hutter et al. 2014)
is a scaled-up version of K2-138 and Kepler-223, with four
sub-Saturn-sized planets in a 1:2:4:6 resonant chain with
periods from 13–81 days. Finally, the benchmark TRAPPIST-1
system hosts seven planets in a resonant chain, with successive
period ratios of 8:5, 5:3, 3:2, 3:2, 4:3, and 3:2 (Gillon
et al. 2017; Luger et al. 2017). Like TRAPPIST-1, K2-138 may

Figure 8. The distribution of distances from 3:2 period ratios in confirmed
multi-planet systems that have three or more planets in a compact geometry
(defined as having three planets with Period/Shortest Period <4). Planetary
systems with multiple near-3:2 resonances are highlighted in red. K2-138 is the
only system near an unbroken chain of four near-3:2 resonances. Kepler-79 and
Kepler-223 (shown in blue) both have four planets in or near a chain of
resonances. The vertical lines indicate the positions of successive 3:2 period
ratios.
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represent a pristine chain of resonances indicative of slow,
inward disk migration.

Another notable feature of the TRAPPIST-1 system is that the
seven known planets form a complex chain of linked three-body
Laplace resonances (Luger et al. 2017). Similarly, Kepler-80
(KOI-500) is a five-planet system where the four outer planets
form a tightly linked pair of three-body resonances (Lissauer et al.
2011; MacDonald et al. 2016); Kepler-223, described above, also
contains a pair of three-body resonances. One other system,
Kepler-60, appears to be in either a true three-body Laplace
resonance or a chain of two-planet mean motion resonances
(Goździewski et al. 2016). A three-body resonance satisfies the
condition that p P p q P q P 01 2 3- + + »( ) [( ) ] ( ) , where p
and q are integers and Pi the period of the ith planet. For K2-138,
we find that the three consecutive sets of three planets (bcd, cde,
and def) all satisfy this condition with p q, 2, 3=( ) ( ), resulting in
values of 4.2±1.7×10−4 days−1, 1.6- o 0.9×10−4 days−1,
and 2.4- o 4.9×10−4 days−1 respectively, all close to zero. In
simulating the Kepler-80 system, MacDonald et al. (2016) find
that their migration simulations can naturally describe the final
system architecture, with dissipative forces pushing the interlocked
planets out of two-body resonances and into three-body
resonances; the K2-138 system may have undergone something
similar. K2-138 joins a relatively modest population of known
systems with four or more planets in or close to a resonant chain,
and a very small population of systems with interlocking chains of
three-body resonances, making it an ideal target to study for TTVs.

We calculated the transit times of K2-138 c, d, e, and f
shown in Figure 9. For each transit, we fix the model transit
parameters to the best-fit values given in Table 2, and allow
only the mid-transit time to vary. To calculate the uncertainties,
we compute the residuals from the best-fit model and perform a
bootstrap analysis using the closest 100 timestamps, re-fitting
the mid-transit time at each timestamp permutation (Wall
et al. 2003). Examining the resulting transit times, we do not
find evidence of significant variations at the level of the average
8–10 minute timing precision from the K2 data. The individual
transits of K2-138b have insufficient signal-to-noise for robust
transit time calculation.

In order to estimate the amplitude of potential TTVs, we use
the mass–radius relation of Weiss & Marcy (2014) for planet
radii in the range 1.5–4 RÅ (M R2.69p p

0.93= ´ ), predicting
that the five planets have masses between 4 and 7 M⊕. Near
resonance, TTV amplitudes depend on planet masses, proxi-
mity to resonance, and orbital eccentricities. Using the
TTVFaster code29 (Agol & Deck 2016), we estimate
potential TTV amplitudes of 2.5, 5.1, 7.1, 6.9, and 4.8 minutes
for planets b, c, d, e, and f, respectively, assuming circular
orbits; for eccentric orbits, these amplitudes could be higher.
We can also estimate the “super-period” of the planets: when
two planets are close to resonance, their TTVs evolve on a
larger timescale referred to as the super-period. Using Equation
(5) from (Lithwick et al. 2012), we calculate super-periods of
139.4 day, 148.1 day, 144.7 day, and 144.2 day for the b–c,
c–d, d–e, and e–f pairs, respectively. The K2 observations span
slightly more than half of this amount of time, but as shown,
the uncertainties on the measured transit times with the
processed photometry are large enough to swamp the
amplitude of the expected signal. However, with careful
sampling over a longer observing baseline and higher precision
photometry, the TTVs may be accessible. One possibility is the
NASA Spitzer telescope. For K2-18b, Benneke et al. (2017)
measure a transit timing precision of ∼0.9 minutes with
Spitzer. Using the error approximation of Carter et al. (2008)
and scaling for the properties of the K2-138 planets, we
estimate that Spitzer would achieve transit timing precision of
∼2 minutes, which would be sufficient to measure the TTVs of
the outer planets. Another possibility for measuring TTVs is
the ESA CHEOPS mission (Broeg et al. 2013), although
K2-138 (V=12.2, K=10.3) is at the faint end of their target
range.
The empirical relation of Weiss & Marcy (2014) disguises a

large scatter in the measured masses for planets ranging from
2–3 RÅ, spanning nearly an order of magnitude from roughly
2–20M⊕ (see Figure 11 of Christiansen et al. 2017). This
diversity is due to a wide, degenerate mix of rock, volatile, and
gas compositions that can comprise this size of planet.
Although the K2-138 planets do not demonstrate significant
TTVs in the K2 data, their masses may be accessible to radial
velocity observations. By comparing to the ensemble of mass–
radius measurements to date, we estimate a minimum mass of

M4 Å for the four outer planets, and therefore RV semi-
amplitudes of 2ms−1. Achieving this precision on K2-138
may be a challenge, given the aforementioned stellar activity
level. If any of the planets are measured to be lower density,
and therefore likely volatile rich (such as the resonant planets in
Kepler-79), they may be interesting yet challenging prospects
for atmosphere characterization, given the moderate brightness
of the host star.

7. Conclusions

We have presented K2-138, the first discovery from the
citizen scientists participating in the Exoplanet Explorers
project. K2-138 is a compact system of five sub-Neptune-
sized planets orbiting an early-K star in a chain of successive
near-first-order resonances; in addition, the planets are locked
in a set of three-body Laplace resonances. The planets may be
accessible to mass measurement via dedicated radial velocity
monitoring, and possibly via TTVs with improved timing

Figure 9. Examining the transit times of K2-138 c, d, e, and f. There are no
significant variations observed at the timing precision of the K2 30-minute
cadence observations.

29 https://github.com/ericagol/TTVFaster
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precision. The Exoplanet Explorers project has provided an
additional 68 candidate planets from the C12 light curves that
likely contain additional planet discoveries, and we plan to
upload potential detections for consideration from the rest of
the available K2 campaigns.
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