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1. Introduction

Theautovetteris amachine learninpasedclassifie that dspositions TCEs intthree

classes: PC (Planet Candidate), AFP (Astrophysical False Positive) Tén(Nsn

Transiting Phenomenonjefined as follows:

1 Class PC contains signals tlae consistent with transiting planets, and for which no
known reasonyasts to rule out that hypothesis

1 Class AFP contains signals of astrophysical origin that could nplaretarytransits,
such asletached and contaetlipsing binaries, pulsatingess starspotsandother
periodic signals for which there is strongdamce to rule out a transiting planet
origin.

1 Class NTP contains signalsat are evidentlpf instrumental agin, or arenoise
artifacts

This document describes thatovetterand how it is used to produce a catalog of Planet
Candidates from the Q@17 DR24 TCEs (Threshold Crossingénts)that are identified

in theKeplerSOC (Science Operatio@enter) pipeline [Jenkins 2010ab] version 9.2
[Seader et al. 2015].

Classificationis accomplished by means of a decision-sased machine learning

technique known as theandom forest The inputs to the autovetter arg@ning data

setcomposed of TCEs that have been dispositioned (mostly) by humans into these three
classes, and a setattributes(scalar statistics) associated with each TCE. From the

tai ning set, the autovetter Ol earnsd a maprg
mapping is then applied uniformly and consistently to all TCEs to produce a catalog of

planet candidates.

1.1 Motivation for Another Planet Candidate Catalog

TheKeple project has produced tl@l-Q17DR24KOI (Kepler Object of Interest)
activity table which is hosted by NEXScNASA Exoplanet Science Institytand
contains a catalog of planet candidafdsistable was produced by thebovetter an
expert system daged toautomatically clas§y TCEs [Coughlin 2015], andill
henceforth be referred to as the robovetter catalog

The autovetter produces a different catalog of plaaetlidates. One might askhy

offer two catalogsThe autovetter and robawer followed independemhethodologyto

arrive at the same goalautomation of the process of human classification of planet

candidates to achievast,robust and consistent vetting of the entire population of TCESs.

The Omachine |l earnihgbéoeaypeotcéytishiteme@r appr
autovetter 6@edd eeciréiaount ornuol neosu s | y frobovettert he d e
operates withxlicitly constructed decision rules

The autovettr and robovetter evolved parallel, learning from eadther iteratively.
The process has benefitboth, improving thie respectiveplanet cataloggor example,
earlyrobovetter esults indicatethat theautovetter was initially mdassifying some
TCEs with secondary eclipses as planet candidates; lygaaielv attributes we
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improvadlt he autovetteros ability tlmtheotherr ect |
direction, aitovetter results showed that the robovetter was too strongly rejecting
candidates based on diagnostics indicagipgssible centrai offset, which allowed the
robovetter to be tuned to mitigate that problem.

Though the two atalogs have converged overtimet hey dondét al ways
classification for individual TCEs, nor wouldevexpect them to, given the distinctly
different orign of the decision rules for the autovetter and robovefisranexample the
autovetter tends to classify planets that are large enough and bright enough to have
secondary eclipses as AFPs, while the robovetter is tuned to be able to identisthem
PCs

Another important difference is that while the autovetter has three classifications,
PC/AFP/NTP, the robovetter has four flags: Not Trahiie, Significant Secondary,
Centroid Offset, and Ephemeris Match. These flags allow varioupguidations (&.,

on and offtarget EBs, oftarget flux PCs, secondary eclipses) to be selected for further
study.

The most importardifference between the catalagghat n addition to a predicted
classificationfor each TCEthe autove#r also provides Bayesan estimate of the
posterior probabilitythat theTCE is a member of each cladsor a given TCE, the
pogerior probability for theclass PC is a measure of ttanfidence that the TCE is a
planet.Posterior probabilities can be advantageously useaiiststal studies such as
occurrence rate calculations toweight planet candidates that are at the noisy edges of
the planet catalog.

Finally, we note that thautovetter results, which can be found in the@17 DR24 TCE
table at NExSc¢lchangeneithe the dispositions in any KCQdctivity tablenor the Kepler
planet candidate count

1.2 Overview of This Document

We describe the autovetter inputs and outputs in sectiand 3. In section 4, we

provide some background on decision trees and the rafatest. In section 5 we

describe the attributes that are used by the random forest to classify TCEs. In section 6,
we describe how the training set is constructed. In section 7 we describe the computation
and use of posterior class probabilities. In B®&c8 we presdrthe autovetter catalog and

give a detailed comparison o$ itesults witlthose of the robovetter cataldgeferences

are provided in Section 9.

y

adg
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2. Autovetter I nputs

The autovetter requires two inputs: tit&ributes matrixand thetraining data set

Attributes are the scalar parameters and diagnostic statistics that are computed for each
TCE. They include fitted transit parameters (such as period, transit depth, transit epoch),
stellar parametersuch as effective temperature and grgyig well as signal to noise

and chisquared from the transit model fits. The attributes matrix has a row for each TCE
and a column for each attribute. A list of attribute names is provided in section 5.

The training data set consists of labels PC (pleaetlidate)AFP (astrophysical false
positive),andNTP (nontransiting phenomenon) for a subset of several thousand TCEs.
ThePC labelsn our training seare derivedrom dispositionsoriginally produced via a
manual vetting procestevelopedy the TCERRT (Threshold Crossing Event Review

Team) The AFP and NTP labels come from TCERT dispositions combined with other
diagnostics. For the purpose diting the autovetter, the training set laksgks

consi der ed t o Theeonstrgction of thlaining data detds discussed in
detail in section 7.
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3. Autovetter Outputs

The autovetter produces tf@lowing outputs for each TCE

a) Random forest vote fraction, in percent, for each class (PC, AFP, NTP),

b) Uncertainty in random forest vote fracatian percent, for each class,

c) Posterior class probabilities that the TCE is a member of each of the three classes,
d) An autovetér-determined classificatiolPC, AFP or NTF, and

e) A training label (PC, AFP, or NTP), tiie TCE was in the training set

Desaiption of the autovetter outputs

av_vf _pc, av_vf_afp, av_vf_ntpfloat)

Vote fraction value for classes PC, AFP and NTP, respectiflegt,(in percent). For
each class, the vote fraction value is the mean class vote fractmsdbof 10 random
forest runs

av_vf_pc err, av_vf_afp err, av_vf_ntp_err (float)

Uncertainty in the vote fractidior classes PC, AFP and NTP, respectivéba, in
percent) For each class, the error in the mean class vote fraction from a set of 10 random
forest runs ishe standard deviation in the class vote fraction divided by the square root
of 10.

av_pp_pc, av_pp_afp, av_ppntp (float)
Posteriorclassprobabilities for PC, AFP and NTP classifications, respectikdgt( in

percent).

av_pred_clasqchar)
Classificationspredicted by the autovettexhich are the optimum MAP (maximum a
posteriori) cassifications. Valuesa@®@P C6, O6AFP6, or ONTP®S

av_training_set(char)

Training labels: if the TCE was included in the training set, the training éaceldes

whatwe b el i e v eclagsificatibnhand tdkesravab®®o ei t her O0PCO6, O6A
O NT.Praininglhkbel s ar e gWUNKéfor TGEs thah drenet incduded dn the

training set.

For details about the determination of posterior probabilities ptichom MAP
classifications seglenkins 2015c]
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4. Decision Trees and the Random érest

A decision treas a hierarchical series ohedimensionainequalities that partitions the
phase space attributes At each split, a hyperplane divides a sindtalaute into a left
branchandarighir anc h, i n whk vakehis ldshtlean @ett iranch)fou t e 6
greater than (right branch) the value at the split.

A split reduces entropy when it partitions the data into regions in which the class
populations are more sharply differentiated than they were before the split. Which
attribute to split on and the value of that attribute at the split are chosen to maximize the
resulting entropy reduction. Successive splits are carried out according to this-entropy
reduction principle. Each split produces two new branches in the tree. Splitting continues
until no further entropyeducing splits are availabl€he terminal split on each branch
produces a pair déaf nodesregions of phase space in which the clagsufations

should be highly differentiated to favor one cladse full set of splits defines the

decision tree classifier, which maps any vector in attributes phase space to the predicted
classification associated with the leaf node in which the vee®r li

The random forest refines the decision tree approach in two ways. The first refinement is
calledbootstrapaggregation obagging Insteaco f a si ngl eftreesise, a o6f «
generated from a set of bootstrap samples of the training data setaésl sbag. A
bootstrap sample is an ensemble of examples drawn with replacement from the training
set, and of the same size as the training set. On average, a bootstrap samapleuises

2/3 of the training set. The remaining 1/3 of the trainingeetalledut-of-bag

samples. Because they are not used in that decision tree, they are available to estimate
classification error withoutommitting the crime ob d at a s Footluspaéasom, the
random forest does not require crosdidation to esmate classification erroBagging
decreases the variance of the classifier, meaning that it reduces its sensitivity to the
characteristics of a particular training set, thus mitigating the problewedfitting. The
second refinement is that at evepjits the attribute to split on is chosen from a different
small random subset of the attributes, instead of from the entire set of attributes. If the
splitting attribute were always selected from the entire set of attributes, the trees will tend
to look similar, since the strongest attribute will be chosen at each split. Choosing the
splits from small random samples of attributes effectidelgorrelateshe trees. For

each example, the predicted class is then decided by the majority vote amongedishe t

in the random forest.

The two parameters that control tla@dom foresare the number of trees in the forest

and the size of the random subset of attributes to choose from at each split. The number
of trees can be optimized by incrementally incireg# until there is no improvement in

the classification error. We find that good results can be obtained with forests of 10,000
trees Following standard practice, we todietsize of the random subset of attributes that
is usedat each splito be thesquare root of the number of attributes.

For more details abouté random forest, s¢Breiman 2001jand[James 2013]
Implementation of the random forest in the aetter is discussed {iMcCauiff 2015]
and[Jenkins 2015c]
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5. The Attributes Matrix

Attributesare scalar quantities that are computed for each TCE. Ideally, attributes capture
characteristics that aid in classification. Unlike classification methods that depend upon
distancedetween pointg attribute phase space, ttemdom foresis robust to missing
attribute values; not all attributes need exist for each exaB@tause each split must be
chosen from a small random subset of the attributesatitlom foresis relatively robust

to correlations in the attributes.

An attributés importanceis measured by the increase in the overall classification error
rate that would result from randomly scrambling the values of that attribute among all the
out-of-bag examples. Table 1 list44 attributes that the awtetter usedsorted in order

of importance. Attributes whose importance fell below an empirically detedmine
importance threshold of 5xF@vere not usecnd are not listedSorted importances for

the 114 attributes are plotted in Figure 1.

Attribute Importances

10"

10 ¢

Importance
=)
~n

=y
o,
)

107

10° | | | i i
0 20 40 60 80 100 120
Sorted Attribute Index

Figure 1. Sorted importances for the 114 attributes used by the autovetter

It is beyond the scope of this document to provide complete descriptions of all the
attributesin Table 1 That said, many of the attribute names aredsdtriptive Most of
the attributes areomputed in the DV (Data Validation) section of KeplerSOC
pipeline[Wu 2010] It is possible, however, to formulate and compute new attrilpotss

10
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hoc,afterthe pipelinehas compted. We have done this in several cgsekich we will
discuss in th@ext sectionwherewe will identify and describe a few of the most
important attributes and indicate how they are computed. Fefrd@scriptions of more

of

theimportant attributes, sgdenkins 2015c¢]

Tablel. Attributes Ugd by the Autovetter aritheir Importances

OCoO~NOOUPA~,WNERE

. minLongerShorterPeriodSignificance

. IppStatistic

. numberOfPlanets

. planetCandidate.weakSecondaryStruct.maxMes

. planetCandidate.weakSecondaryStruct.mesMad

. binaryDiscriminationResults.longerPeriodComiganStatistic.significance

. binaryDiscriminationResults.shorterPeriodComparisonStatistic.significance
. binaryDiscriminationResults.longerPeriodComparisonStatistic.value

. binaryDiscriminationResults.shorterPeriodComparisonStatistic.value

. chiSquaeGof

. bootstrap_falseAlarmRate

. evenTransitsFit_ratioSemiMajorAxisToStarRadius_value

. oddTransitsFit_ratioSemiMajorAxisToStarRadius_value

. maxEphemerisCorrelationAllStars

. minMesMaxMesRatio

. centroidResults.differencelmageMotionResultKmGentroidOffsets.meanSkyOffset.value

. edgeStat

. allTransitsFit_ratioSemiMajorAxisToStarRadius_value

. centroidResults.differencelmageMotionResults.mgKicCentroidOffsets.meanSkyOffset.significan
. sesProbability

. tEquilibrium

. tBrightness

. centroidResults.fluxWeightedMotionResults.motionDetectionStatistic.significance

. allTransitsFit. modelFitSnr

. allTransitsFit. modelChiSquare

. centroidResults.fluxWeightedMotionResults.motionDetectionStatistic.value

. allTransitsFit_orbitalPexdDays_value

. planetCandidate.modelChiSquare2

. numSesinMes

. evenTransitsFit_orbitalPeriodDays_value

. centroidResults.differencelmageMotionResults.summaryQualityMetric.fractionOfGoodMetrics
. oddTransitsFit_ratioSemiMajorAxisToStarRadius_ uaisty

. evenTransitsFit_ratioSemiMajorAxisToStarRadius_uncertainty

. evenTransitsFit.modelChiSquare

. evenTransitsFit.modelFitSnr

. modelFitSnrToMesRatio

. centroidResults.differencelmageMotionResults.mgControlCentroidOffsets.meanSkyOffset.valu
. allTransitsFit_planetRadiusEarthRadii_value

. centroidResults.fluxWeightedMotionResults.sourceOffsetArcSec.value

. allTransitsFit_ratioSemiMajorAxisToStarRadius_uncertainty

. effectiveTemp.value

. centroidResults.differencelmageMotionResnitgicCentroid Offsets.meanSkyOffset.uncertainty
. oddTransitsFit. modelChiSquare.reducedchi

. oddTransitsFit_planetRadiusEarthRadii_value

. evenTransitsFit_semiMajorAxisAu_value

. centroidResults.differencelmageMotionResults.mgControlCentroid Offests SkyOffset.uncertainty
. chiSquare7

. evenTransitsFit_planetRadiusEarthRadii_value

. allTransitsFit_semiMajorAxisAu_uncertainty

11
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50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.

98

chiSquarel
allTransitsFit_ratioPlanetRadiusToStarRadius_value
oddTransitsFit_ratioPlanetRadiusToStarRadiakie
allTransitsFit_orbitalPeriodDays_uncertainty
radius.value

oddTransitsFit_transitDepthPpm_value
allTransitsFit_transitDurationHours_uncertainty
allTransitsFit_transitingressTimeHours_value
maxEphemerisCorrelationSameStar
redlucedParameterFits_1.modelChiSquare.delta
nPulsesFlaggedAsPlanet
evenTransitsFit_transitDepthPpm_value

depthStat

allTransitsFit_transitDepthPpm_value
centroidResults.fluxWeightedMotionResults.sourceOffsetArcSec.uncertainty
oddTrangsFit_transitingressTimeHours_value
evenTransitsFit_inclinationDegrees_value
binaryDiscriminationResults.oddEvenTransitDepthComparisonStatistic.significance
evenTransitsFit_transitingressTimeHours_value
tBrightnessUpperFractionalErrorBar

albedo

evenTransitsFit_transitDurationHours_value
evenTransitsFit_semiMajorAxisAu_uncertainty
epochKjd

allTransitsFit_inclinationDegrees_value
robustStatisticToMesRatio
evenTransitsFit_minimpactParameter_uncertainty
evenTranssFit_transitDurationHours_uncertainty
allTransitsFit_transitDurationHours_value
oddTransitsFit_transitDurationHours_value
evenTransitsFit_transitEpochBKkjd_uncertainty
tBrightnessLowerFractionalErrorBar
evenTransitsFit_transitingressEhhours_uncertainty
keplerMag
evenTransitsFit_ratioPlanetRadiusToStarRadius_uncertainty
oddTransitsFit_transitEpochBkjd_uncertainty
rmsCdpp
allTransitsFit_planetRadiusEarthRadii_uncertainty
allTransitsFit_transitDepthPpm_uncertainty
chiSquareDof10
evenTransitsFit_planetRadiusEarthRadii_uncertainty
tEquilibriumLowerFractionalErrorBar
oddTransitsFit_inclinationDegrees_uncertainty
evenTransitsFit_transitDepthPpm_uncertainty
cdppSlope

normCompSum
allTransisFit_inclinationDegrees_uncertainty
binaryDiscriminationResults.oddEvenTransitDepthComparisonStatistic.value

. allTransitsFit_transitingressTimeHours_uncertainty
99.

mesGrowthStat

100. evenTransitsFit_inclinationDegrees_uncertainty

101. allTransitski minlmpactParameter_uncertainty

102. oddTransitsFit_minimpactParameter_value

103. allTransitsFit_ratioPlanetRadiusToStarRadius_uncertainty
104. planetCandidate.weakSecondaryStruct. maxMesPhaselnDays
105. skyGroupld

106. albedoUpperFractionalErrorBar

12
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107. diTransitsFit_minimpactParameter_value

108. binaryDiscriminationResults.oddEvenTransitEpochComparisonStatistic.value
109. planetCandidate.weakSecondaryStruct.minMesPhaselnDays

110. diffRatioSemiMajorAxisToStarRadiusV

111. planetCandidate.weakSecondary$muaxMesPhaselnDays.normalized

112. detectedFeatureCount

113. removedFeatureCount

114. planetCandidate.suspectedEclipsingBinary

13
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6. Building the Training Set

All supervisedmnachinelearningclassifiers require @aining setof exampleswith
knownclasslabels In this application, the examples are TCiasre are three classes

with labels PC, AFP, and NTP. In this section, we dest¢hbe&onstruction of the

training set that was used to produce the autovetter catalog. The training set contains
3600 PCs9596 AFPs and 2541 NTPs, and is available at NExScl as part of Q4 Q1
DR24 TCE table.

The training seand its attributeareultimatelyused to build aandom forest clasfier
thatmaps the attributes ahy TCEto a predicted class label of eiteC, AFP, or NTP.

It is important to have representativeagyples of each class that syhe entire range of
expected characteristics. It is also important to develop and include attributes that can
help identify features characteristic of each of thiedént classes. In this section we will
see both aspects of this strategy in action.

The autovetter class definitions differ somewhat ftbose used bthe obovetterto

create the KOIKeplerObject of InterestyataloggBatalha 2013][Borucki 2014],
[Borucki 2011b] [Burke 2014] [Coughlin 2015] [Mullally 2015], and[Rowe 2015] The
robovetteridentifies TCEs whose light curves lack a transit signathaeacteristic of a
planet ora norrcontact eclipsing binary with a Not Transit Like flag. Tt include
TCEs with periodic light curve variations due to contact binaries, starspots, and
pulsations. The remaining TCEs ateistened as KOIs, which are then dispositioned as
either PC (planet candidatesy FP (False Positives). The robovetterddss is almost

the same as that of tlaaitovetterthe only difference being that the autovetter defines a
PC to have radius smaller than 25K in the training sefThe FP classontains
predominantlyT CEsthat have transiike signals consistent wita transiting planetary or
(non-contacting) stellar companion. The robovetter FP class is a subset of the autovetter
AFP class, in whiclhve havechosen to also include TCEs produced by periodic signals
of astrophysical origin that are due to pulsatingsstaontact binarieand starspots; the
robovetter would classify theses Not TransiLike.

6.1 Training Examples from TCERT

The first step is to include a large number of examples of planet candidates and false
positives, as determined Bye TCERT. These cane from thecumulative KOI Kepler
Object of Interestactivity table, downloaded on IBeb 2015 from the NExScl archive
after the Q1Q12 and Q1Q16 ebleswerec | 0 s e d . ®We maifcd thentranSit
ephemeridegtransit epoch, period, and duratjasf the KOIs from thecumulative KOI
table to those aheQ1-Q17 TCEs.We label the TCERT planet candidates as PC, and
the false positives as AFP in the training set.

TCERT does not ugglanet radius to determimehether a TCE should be made a PC. But
the largest known exoplanet is HAF32b with radius of 22.5 Earth radii. If a transiting
object has a radius larger than 25 Earth radii, it is likely to be a star rather than a planet.
We therefore apply a planet radius cut, changing the labels of 138dd&@t(candidate)

KOls with radiiexceeding 2%eqth to AFP (astrophysical false positive).

14
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6.2 Multiple TCEs at the SamesRod on a Target

Often the secondary of arckpsing binaryor aresidual signal from primary transiwill
generatene or moe TCE(s) with similar charateristics Other casesf astrophysical

origin that might generate multipleCEsat the same period on a target stafude

contact binaries, starspogs)dpulsationsTo identify this type of TCEwe calclatea

statistic cded minLongerShorterPeriodSignficancet hat t est s ®shet her t
period is close tthat ofanotter TCE on the same target star, and add it to the attributes
matrix. It turns out thaminLongerShorterPeriodSignficanceis ranked aghe most
important attibute (e Table L Another way to identify this type afCE is to calculate

t he P samekatomadvefficient between its ephemeris and the ephemerides of each
of the other TCEs on the same star. For each TCE, we calculate the maximum of these
correltion coefficients,maxEphemerisCorrelationSameStarand add thigo the
attribut es madphemerisis highly cortelated withGhat@f another TCE

on the same star, it is most likelye toa residual of another TCEhe attribute
maxEphemeiisCorrelationSameStar is ranked #58 ilmportance (se@&able 1) By
including in the training set a sufficient number of examples of TCEs with periods close
to those of other TCEs on the same ta(tietse are common among the TCERT false
positives) we trainedthe autovetter to classify simil&ICEs as AFPs.

6.3 Contaminated TCEs

It is possible for a bright star with a periodic signal (such as an eclipsing binary or an RR
Lyrae variable) teontaminaté i.e.imprint its perodic signature oii othertargets on

the focal planeFlux from the PRKPoint Response Function) of a bright star, or flux

from anoptical ghostcan overlap the PRF of a target star. Optical ghosts are caused by
reflections from the&CCD surface to the fielflattening lensegor the Schmidt corrector

lens) and backo the CCD. The reflemn createsn outof-focusimage ofthe source

star. Flux from a optical ghostan comaminate stars marpixels away from a bright

source on the focal planEor a detailed study @his phenomeon, se¢Coughlin 2014]

We found1437 TCEdhatwere ephemerisatched teeclipsingbinary contaminators;
these were labeled as ABRd added to the training sethey were not already included
among the TCERT false positives.

Another class ofontaninatedTCEshasa spuriougt59-dayperiod, which has been
identified as an insimental systemati@65 TCEswhose light curveshow this
signaturewere identified Since these signals are not astrophysical in originatneed
them as NTP and includedem (if they were not already presentjhe training set.

210 TCEs were found to be ephemaeniatched to an RR Lyrae contaminaaod were

alsolabeled adNTP and included in the training séowever,to be consistent with our
classification schemwe slould have labeled theas AFP (since their periodicity is

astrophysical in origin)We believe that changing the labels of thHEG&sto AFPIn
futuretraining ses mightleadtoir mpr ovement i n the autovetter
AFP and NTP cleses.

15
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A TCE that shows a high correlation with a TCE on another target is most likely to be
contaminated by mechanisms such as the ones discussed above. In order totimprove

a ut o v sehsiivityrtod contaminationwe computeda statistic called
maxEphemerisCorrelationAllStars, whichist h e max i mu m ®corelatibne Pear
coef fi ci ens$eplemerigvaticthe ephénieddes of all TCEs on other Bvars
appended this column vector to the attributes matrix. Of all the attributes,
maxEphemerisCorrelationAllStars ranks #14 in importance (séable 1)

6.4 Other types of CEs that corrspond to NofiTransiting Phenomen@TP)

The LPP (locality preserving projection) statidtias been shown to provide excellent
separation between light curwegth and wthout a transit signal, so it should effectively
distinguishNTPs from AFPs and PCs. We included the LPP statistic as a column in the
attributes matrix, so that the autovetter could learn to make use of it. It is ranked at #2 in
attribute imporance(see Table 1)The LPP stadtic is presenteth [Thompson 2015]

Another tool for identifying TCEs of class NTP is th@otstrap testwhich identifies
TCEs whose flae alarm probability exceeds sotheesholg makingthemhighly likely

to bestatigical false alarra We use the newest, corrected version of the bootstrap
(developd for the 9.3 pipeline release) amupled afalse alarm probability threshold of
10, TCEs that failed the bootstrap testa threshold cf0**werelabeled as NTRnd
included inthe training set-or a discussion of the bootstrape$Jenkins 2015aénd
[Seader 2015]as well aghe Appendix ofJenkins 2015b]

In the Q1Q12 catalog generation process, a large number of TCEs were visually
inspected by @ TCERTteamrand c | as si f i. Wadepherserighatcked1798 Ol s 6
of these TEs to the Q4Q17 TCEs. WdabeledasNTP and included in the training set

any of these that were not alreadgluded in the training set as AEPs

Sometimes TCE isproducedoy aneventthatis not physically consistent withteansit
The MES ratios test computes ratios of tbieustStatistic andmodelFitSnr to the
maxMES (maximum multple-event statistic). These three attribues provided byhe
DV (data validation) component of tieplerpipeline. A low ratio ofrobustStatistic or
modelFitSnr to themaxMES indicates that the transits are of inconsistent depth, or that
the transit pulse is netell matchedo a physically realistic &ansit waveform. We found
171 TCEdor whichboth matios werdess than 0.5thesewere labekedasNTP and
included inthe trainhg set. We note that iRCsfrom the NExScl catalotpiled the MES
ratios test. We includkboth the ratio of theobustStatistic to themaxMES and the
ratio of themodelFitSnr to themaxMES in the attributes matrix so that the autovette
can learn to make use ttfem These ratios rank at #75 and #8&spectivelyjn atribute
importancgseeTable 1).The MES ratios test is disssed in more detail idenkins
2015c]

Anotherclass of objects that wabel as NTRn the training seare KOIs from the
NExScl cumulative table that had then-tvansitl i Kag 6et to trugeand had both
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6significant second aflagssettd falsglgpcaasatie NdR aasst r oi d
shouldlogically include these.

6.5 Bad TCEs

Finally, there were 74 TCEs that were determibgd CERTt o0 b e 0 kbacduseT CEs 0

their detections were triggered by residuals of fitted transits; these were excluded from
the training set.
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7. PosteriorClass Robabilities

The output of the random forest classifier depends oprtbeclass probabilitieof the
training data set. If these are different than those of the TCEs we want to classify, then
the classification accuracy may be syjtimal. For @ample, if the data to be classified
has a greater proportion of NTPs than the training set, a classifier that is more biased
toward NTPs could have a lower classification error thamctinentrandom foest. We

can correct for such biases t@yweightingthe vote fractions so that NTP is chosen at a
lower vote threshold. Starting with initial estimates for the priors for the class
probabilities of PC, AFP, and NTP, it is possible tavedght the random forest vote
fractions so as to minimize the totalmber of misclassifications across the training set
and estimate the prior class probabilities of the whole TCE population. An iterative
bootstrap approach to accomplish this optation is outlined iffJenkins 2015c]

With knowledge of prior class prabilities one can proceed to estimate posteliass
probabi |l i tRukesPosterioaclagsprpalslibes reflect our confidence that the
TCE belongs to the predicted class; they are an internal measure of the reliability of the
classification.

Figures 3 and 4lisplaythe autovetter classifation results inthe form of aernary

diagram (Cf. section §. Verticesof the ternary diagram correspond to each of the three
classes; at a vertekere is a probability of one to be in the associated dasisa

probability of zero to be in any other class. We would expect to have high confidence in
the predicted class af TCE if it is near a verteand much lower confidence if it is near a
decision boundar{the lines separating the colored regioi#w this intuition can be
guantified to give posterior class probabilitiesdégery TCE is shown ifJenkins 2015c]
The key is the development of a RBaclidean distance metric in the phapace of the
ternary diagramieading to estimates of class posieprobability densities as a function

of the reweighted class vot&¥ith a method to compute posterior probabilities in hand, a
naive Bayes classifier is overlaid on the random forest vote fractions, and the MAP
(maximum a posteriori probability) thatvgis optimal agreement with the random forest
is determined.

Posterior class probabilities lead to an important refinement of occurrence rate
calculations. Instead of giving equagight to each PC detection, it is possible to count
each PC detection agdaf r a c t i owithathe fractiom eqeal tadthe PC posterior
probability, ranging from zerto one. In this scheme, planet candidates with low
posterior probabilitiegaturally influence the occurrenceedgss than those with high
posterior probabities. Planet candidatas the critical regimes of low SNRong period,
and small radius are counted but prevefitech severely skewing the occurrence rate, as
would happen if each detection wasunted as one planet.

The foregoing discussiamaturallyleads toa further possibilityabandon votes and
classifications altogether, and instead cawaryTCE (as a fraction of a planet equal to

its PC posterior probability) in the occurrence rate. For example, suppose a TCE is near a
decision boundargseeFigure 3, with 50% AFP posterior probability, 40% PC posterior
probability, and 10% NTP probability, and is classifas\FP by the optimal weighted
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votes. This TCE would therefore contribd@ of a detected planet in aocurrence

rate calculationExtending this approach to include TCEs near the decision boundaries
might be worthwhilebut including all nofPC TCEs no matter how small the posterior
PC probability could significantly skew the results of an occurrence calculation.

19



KSCI-19091001: Autovetter Planet Candide Caalog 7120/15

8. Autovetter Reslts for the Q1-Q17 DR24 TCEs

In this section we present a statistical analysis of the autovetter predicted classifications
of both the training set TCEs and the TCEs of UNKNOWN clésen we turn to a
comparison of the perforance of the autovetter ube classifications derived from the
robovettefCoughlin 2015]

8.1 Performance of the Autovetten the Training Set

The esultsof applying the autovetter classifier to the trainingssetexpressed in terms

of aconfusion matrixin Table 2Rows 1,2, and 3orrespond to true class PC, AFP, and
NTP. Columns 1, 2and 3correspond to predicted class PC, AFP, and NFBPexample,

in column 1 we see that 107 AFP examples and 5 NTP exampleswa@rectly

classified a$*C. In row 3 we see that 8641(5 + 77 + 2459 TCEs that arenembes of

the NTP class, 5 were misclassified as PC and 77 were misclassified a3Ad-P.
diagonal elements show the number of each class that were correctly classified, and the
off-diagonal elements show the misclassifmas. For example, the (3,3) element shows
that 2459 TCEs were correctly classified as NTP; the (3,1) element showS(BBEE5

that were labeled as members of the class NTP in the training set were incorrectly
predicted to be members of the class PC.

Table 2 Autovetter Confusion Matrix

Predicted class PC

Predicted class AFH

Predicted class NTH

True class PC 3495 96 9
True class AFP 107 9365 124
True class NTP 5 77 2459

The confusion rate matrixin Table 3 is derived from the confusion matrix by

normalizing each row by the total number of elements in the corresponding true class

Table 3 Autovetter Confusion Rate Matrix

Predicted class PC

Predicted class AFH

Predicted class NTH

True class PC 0.971 0.027 0.002
True class AFP 0.011 0.976 0.013
True class NTP 0.002 0.0 0.968

From the confusionatematrix, wecomputethe classifcation error rates, shown in Table

4. The overall error rate is the percentage of the training examples that were incorrectly
classified.The PC, AFP and NTP erraates are the percentages of PC, AFP and NTP

training exampleshat were incorrectly classified. Because the error rates were obtained

us i n ef-boaogudt stheygisbpeedictthed gener al i whichistoen er r or 0,

performance that we expect whee thutovetter classifier is applied to asemble of
TCEs of UNKNOWN classNo crossvalidation is necessaryhe foregoing is tre as
long as the training set contains a representative sample of TCEs cd QWK class.

The PC false alarm rate is the peregye of training examples that were incorrectly
classified as PAf the UNKNOWN TCEs have class frequencibat arehe same as
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thoseofthe r ai ni ng s et the dathdWfalse alavnd rate whendhe t
classifier is applied to the UNKNOWN TCEs.

Table 4 Autovetter Error Rates

Overall error rate 2.7 %
PC error rate 2.9 %
AFP error rate 2.4 %
NTP error rate 3.2%
PC false alarm error rate 3.1%

8.2 Classifying the Unknown TCEs

Figure 2shows the autovetter catalog of 3900 ptaramdidates representedplanet

radius vs. orbitaberiod phase spac@here were total 0f20367 TCEs, of which 15737
were in the training set and 4630 were of UNKNOWN cl&ssin the training set, the
autovetter classified8495 of the PCs and 112 thie AFPs and NTPs as planet candidates
(see Table 2293 0of the UNKNOWN TCEs were also classified as planet candidates.

Sincethe PCs in the training sate from past search activities aggherally represent
t he -mdmgv ngd f r ui taverageeheyeshopldhaktigher INR tand o n
larger radiithan the PCsound among thefNKNOWN TCEs. Indeed, @ find that the
median radius and maximum ME®& proxy for SNR) are 2.0 Rearth ang.2 for the
training set PCxompared td..2 Rearthand 8.7 foithe 293 newly classified PCs.

If a planet candidate can be validated by external means such as radial velocity detection,
or internal means (transit timin@wations) it is given the NExSclassification of
CONFIRMED. It is of interest to check how thatovetter classified these. We find that

of the972 TCEs classified as CONFIRMED, the autovetter classified 957 (98.46%) as
PC, 14 (1.44%) as AFP, and 1 (0.10%) as NTP.
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Q1-Q17 Autovetter catalog

3495 PCs classified as planets g
112 AFPs and NTPs classified as planets
293 UNK TCEs classified as planets i

© 23 new planet candidates withR < 2.5 & P > 50

10°

10

Radius [Earths]

10’

10’ 10’ 10°
Orbital period [days]

Figure 2. The autovetter catalog of 3900 planet cand idates. Green points are
TCEs that are PG in the training set; blue points are AFPs and NTPs in the
training set. Red points are TCESs that were not in the training set but were
classified as PCs. Open black rings surround points of PCs with radius smaller

than 2.5 Rearth and perio d longer than 50 days, a range thatis of great
interest in the calculation of planetary occurrence rates.
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Figures 3 and 4howternary diagramdor the TCEs in the training set and TCEs of
previously unknown clas§ince thePC, AFP and NTP vote fractions add to one, only
two are independentye have chosen to display tN&P votefractionalong the abscissa
and the PC vot#&actionalong the ordinate axis. Perfect PC candidates would be at the
top right corner, perfect AF€andidates at the lower right corner, and perfect NTP
candidates at the lower left corn@he densities are generally concentrated toward the
corners of the triangle, and away from the decision boundaries (lines separating the
colored regions), which isie hallmark of a good classifi€tlassifications are the least
certain br points that are near on ¢the decision boundaries.
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Autovetter classification of the training set TCEs

Planet Candidate Vote Fraction

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
Non-Transiting Phenomena Vote Fraction

Figure 3. Autovetter classification of TCES in the training set. Note that the
densities are concentrated near the corners and away from the decision
boundaries (the lin es separating the three colored regions r blue for PC,
green for AFP, and red for NTP ). Separation of the three classes is observed to
be quite good overall. There is some overlap b etween AFP and NTP and
between AFP and PC, but NTP is well separated from PC. Classifications are
the least certain f or points that are nea r or on the decision boundaries
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Autovetter classification of the TCEs of UNKNOWN class

Planet Candidate Vote Fraction

Fgwwin, A% i
0.6 0.5 0.4 0.3
Non-Transiting Phenomena Vote Fraction

Figure 4. Autovetter classification of TCEs of UNKNOWN c /ass. Again, the
densities are concentrated near the corners of the triangle and away from the
decision boundaries. Classifications are the least certain for points that are

near or on the decision boundaries.
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Histograms ofposterior probabilityo be inthe PC clasare shownn Figures 5, 6, and 7
for TCEs that are classified as PC, AFP and N&BpectivelyEvidently, aTCE is
overwhelmingly likely to be a PC if classified as a PC, and overwhelmingly unlikely to
be a PC if not classified as a PC.

PC posterior probability of TCEs classified as PC

3000 T ; ! ! ! '
| | | | | I median 0.8

2500

2000

1500

counts

1000

500

0.4 0.5 0.6 0.7 0.8 0.9 1
PC posterior probability

Figure 5. PC posterior probability for TCEs classified as PC. Most probabilities

are quite close to 1, tho ugh a narrow tail extends downward .
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Figure 6. PC posterior probability for TCES classified as AFP. The probabilities

are concentrated near zero, tho ugh a narrow tail extends upward .
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