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1. Introduction  
 

The autovetter is a machine learning based classifier that dispositions TCEs into three 

classes: PC (Planet Candidate), AFP (Astrophysical False Positive), and NTP (Non-

Transiting Phenomenon), defined as follows:  

¶ Class PC contains signals that are consistent with transiting planets, and for which no 

known reason exists to rule out that hypothesis. 

¶ Class AFP contains signals of astrophysical origin that could mimic planetary transits, 

such as detached and contact eclipsing binaries, pulsating stars, starspots, and other 

periodic signals for which there is strong evidence to rule out a transiting planet 

origin. 

¶ Class NTP contains signals that are evidently of instrumental origin, or are noise 

artifacts. 

 

This document describes the autovetter, and how it is used to produce a catalog of Planet 

Candidates from the Q1-Q17 DR24 TCEs (Threshold Crossing Events) that are identified 

in the Kepler SOC (Science Operations Center) pipeline [Jenkins 2010ab] version 9.2 

[Seader et al. 2015]. 

 

Classification is accomplished by means of a decision tree-based machine learning 

technique known as the random forest. The inputs to the autovetter are a training data 

set composed of TCEs that have been dispositioned (mostly) by humans into these three 

classes, and a set of attributes (scalar statistics) associated with each TCE. From the 

training set, the autovetter ólearnsô a mapping between attributes and predicted class. This 

mapping is then applied uniformly and consistently to all TCEs to produce a catalog of 

planet candidates. 

 

1.1 Motivation for Another Planet Candidate Catalog 

 

The Kepler project has produced the Q1-Q17 DR24 KOI (Kepler Object of Interest) 

activity table, which is hosted by NExScI (NASA Exoplanet Science Institute) and 

contains a catalog of planet candidates. This table was produced by the robovetter, an 

expert system designed to automatically classify TCEs [Coughlin 2015], and will 

henceforth be referred to as the robovetter catalog. 

 

The autovetter produces a different catalog of planet candidates. One might ask: why 

offer two catalogs? The autovetter and robovetter followed independent methodology to 

arrive at the same goal ï automation of the process of human classification of planet 

candidates to achieve fast, robust and consistent vetting of the entire population of TCEs. 

The ómachine learningô approach differs from the óexpert systemô approach in that the 

autovetterôs decision rules are ólearnedô autonomously from the data, while the robovetter 

operates with explicitly constructed decision rules.   

 

The autovetter and robovetter evolved in parallel, learning from each other iteratively. 

The process has benefitted both, improving their respective planet catalogs. For example, 

early robovetter results indicated that the autovetter was initially misclassifying some 

TCEs with secondary eclipses as planet candidates; by adding new attributes we 
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improved the autovetterôs ability to correctly classify secondary eclipses. In the other 

direction, autovetter results showed that the robovetter was too strongly rejecting 

candidates based on diagnostics indicating a possible centroid offset, which allowed the 

robovetter to be tuned to mitigate that problem.  

 

Though the two catalogs have converged over time, they donôt always agree on 

classification for individual TCEs, nor would we expect them to, given the distinctly 

different origin of the decision rules for the autovetter and robovetter.  As an example the 

autovetter tends to classify planets that are large enough and bright enough to have 

secondary eclipses as AFPs, while the robovetter is tuned to be able to identify them as 

PCs. 

  

Another important difference is that while the autovetter has three classifications, 

PC/AFP/NTP, the robovetter has four flags: Not Transit-Like, Significant Secondary, 

Centroid Offset, and Ephemeris Match. These flags allow various sub-populations (e.g., 

on- and off-target EBs, off-target flux PCs, secondary eclipses) to be selected for further 

study. 

 

The most important difference between the catalogs is that in addition to a predicted 

classification for each TCE, the autovetter also provides a Bayesian estimate of the 

posterior probability that the TCE is a member of each class.  For a given TCE, the 

posterior probability for the class PC is a measure of  the confidence that the TCE is a 

planet. Posterior probabilities can be advantageously used in statistical studies such as 

occurrence rate calculations to de-weight planet candidates that are at the noisy edges of 

the planet catalog. 

 

Finally, we note that the autovetter results, which can be found in the Q1-Q17 DR24 TCE 

table at NExScI, change neither the dispositions in any KOI activity table nor the Kepler 

planet candidate count. 

 

1.2 Overview of This Document 

 

We describe the autovetter inputs and outputs in sections 2 and 3. In section 4, we 

provide some background on decision trees and the random forest. In section 5 we 

describe the attributes that are used by the random forest to classify TCEs. In section 6, 

we describe how the training set is constructed.  In section 7 we describe the computation 

and use of posterior class probabilities. In Section 8 we present the autovetter catalog and 

give a detailed comparison of its results with those of the robovetter catalog. References 

are provided in Section 9. 

  



KSCI-19091-001: Autovetter Planet Candidate Catalog                                   7/20/15 

 7 

2. Autovetter I nputs 

 

The autovetter requires two inputs: the attributes matrix and the training data set. 

Attributes are the scalar parameters and diagnostic statistics that are computed for each 

TCE. They include fitted transit parameters (such as period, transit depth, transit epoch), 

stellar parameters (such as effective temperature and gravity), as well as signal to noise 

and chi-squared from the transit model fits. The attributes matrix has a row for each TCE 

and a column for each attribute. A list of attribute names is provided in section 5. 

The training data set consists of labels PC (planet candidate), AFP (astrophysical false 

positive), and NTP (non-transiting phenomenon) for a subset of several thousand TCEs. 

The PC labels in our training set are derived from dispositions originally produced via a 

manual vetting process developed by the TCERT (Threshold Crossing Event Review 

Team). The AFP and NTP labels come from TCERT dispositions combined with other 

diagnostics. For the purpose of training the autovetter, the training set labels are 

considered to be óground truthô.  The construction of the training data set is discussed in 

detail in section 7. 
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3. Autovetter Outputs 
 

The autovetter produces the following outputs for each TCE: 

a) Random forest vote fraction, in percent, for each class (PC, AFP, NTP), 

b) Uncertainty in random forest vote fraction, in percent, for each class, 

c) Posterior class probabilities that the TCE is a member of each of the three classes,  

d) An autovetter-determined classification (PC, AFP or NTP), and 

e) A training label (PC, AFP, or NTP), if the TCE was in the training set. 

 

Description of the autovetter outputs 

 

av_vf_pc, av_vf_afp, av_vf_ntp (float) 

Vote fraction value for classes PC, AFP and NTP, respectively (float, in percent). For 

each class, the vote fraction value is the mean class vote fraction for a set of 10 random 

forest runs.  

 

av_vf_pc_err, av_vf_afp_err, av_vf_ntp_err (float) 

Uncertainty in the vote fraction for classes PC, AFP and NTP, respectively (float, in 

percent). For each class, the error in the mean class vote fraction from a set of 10 random 

forest runs is the standard deviation in the class vote fraction divided by the square root 

of 10.  

 

av_pp_pc, av_pp_afp, av_pp_ntp (float) 

Posterior class probabilities for PC, AFP and NTP classifications, respectively (float, in 

percent).  

 

av_pred_class (char) 

Classifications predicted by the autovetter, which are the optimum MAP (maximum a 

posteriori) classifications. Values are óPCô, óAFPô, or óNTPô.  

 

av_training_set (char) 

Training labels: if the TCE was included in the training set, the training label encodes 

what we believe is the ótrueô classification, and takes a value of either óPCô, óAFPô, or 

óNTPô. Training labels are given a value of óUNKô for TCEs that are not included in the 

training set. 

 

For details about the determination of posterior probabilities and optimum MAP 

classifications see [Jenkins 2015c]. 
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4. Decision Trees and the Random Forest 
 

A decision tree is a hierarchical series of one-dimensional inequalities that partitions the 

phase space of attributes. At each split, a hyperplane divides a single attribute into a left 

branch and a right branch, in which the attributeôs value is less than (left branch) or 

greater than (right branch) the value at the split.  

 

A split reduces entropy when it partitions the data into regions in which the class 

populations are more sharply differentiated than they were before the split. Which 

attribute to split on and the value of that attribute at the split are chosen to maximize the 

resulting entropy reduction. Successive splits are carried out according to this entropy-

reduction principle. Each split produces two new branches in the tree. Splitting continues 

until no further entropy-reducing splits are available. The terminal split on each branch 

produces a pair of leaf nodes, regions of phase space in which the class populations 

should be highly differentiated to favor one class. The full set of splits defines the 

decision tree classifier, which maps any vector in attributes phase space to the predicted 

classification associated with the leaf node in which the vector lies. 

 

The random forest refines the decision tree approach in two ways. The first refinement is 

called bootstrap aggregation or bagging. Instead of a single tree, a óforestô of trees is 

generated from a set of bootstrap samples of the training data set (also called a bag).  A 

bootstrap sample is an ensemble of examples drawn with replacement from the training 

set, and of the same size as the training set. On average, a bootstrap sample uses about 

2/3 of the training set. The remaining 1/3 of the training set are called out-of-bag 

samples. Because they are not used in that decision tree, they are available to estimate 

classification error without committing the crime of ódata snoopingô. For this reason, the 

random forest does not require cross-validation to estimate classification error. Bagging 

decreases the variance of the classifier, meaning that it reduces its sensitivity to the 

characteristics of a particular training set, thus mitigating the problem of overfitting. The 

second refinement is that at every split, the attribute to split on is chosen from a different 

small random subset of the attributes, instead of from the entire set of attributes.  If the 

splitting attribute were always selected from the entire set of attributes, the trees will tend 

to look similar, since the strongest attribute will be chosen at each split. Choosing the 

splits from small random samples of attributes effectively decorrelates the trees.  For 

each example, the predicted class is then decided by the majority vote among all the trees 

in the random forest.  

 

The two parameters that control the random forest are the number of trees in the forest 

and the size of the random subset of attributes to choose from at each split. The number 

of trees can be optimized by incrementally increasing it until there is no improvement in 

the classification error. We find that good results can be obtained with forests of 10,000 

trees. Following standard practice, we took the size of the random subset of attributes that 

is used at each split to be the square root of the number of attributes.  

 

For more details about the random forest, see [Breiman 2001] and [James 2013]. 

Implementation of the random forest in the autovetter is discussed in [McCauliff 2015] 

and [Jenkins 2015c]. 
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5. The Attributes Matrix  

 

Attributes are scalar quantities that are computed for each TCE. Ideally, attributes capture 

characteristics that aid in classification. Unlike classification methods that depend upon 

distances between points in attribute phase space, the random forest is robust to missing 

attribute values; not all attributes need exist for each example. Because each split must be 

chosen from a small random subset of the attributes, the random forest is relatively robust 

to correlations in the attributes. 

 

An attributeôs importance is measured by the increase in the overall classification error 

rate that would result from randomly scrambling the values of that attribute among all the 

out-of-bag examples. Table 1 lists 114 attributes that the autovetter used, sorted in order 

of importance. Attributes whose importance fell below an empirically determined 

importance threshold of 5x10
-5

 were not used and are not listed. Sorted importances for 

the 114 attributes are plotted in Figure 1. 

 

 

Figure 1. Sorted importances for the 114 attributes used by the autovetter . 

 

It is beyond the scope of this document to provide complete descriptions of all the 

attributes in Table 1. That said, many of the attribute names are self-descriptive. Most of 

the attributes are computed in the DV (Data Validation) section of the Kepler SOC 

pipeline [Wu 2010]. It is possible, however, to formulate and compute new attributes post 
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hoc, after the pipeline has completed. We have done this in several cases, which we will 

discuss in the next section, where we will identify and describe a few of the most 

important attributes and indicate how they are computed.  For brief descriptions of more 

of the important attributes, see [Jenkins 2015c].  

 

Table 1. Attributes Used by the Autovetter and Their Importances 
1. minLongerShorterPeriodSignificance 

2. lppStatistic 

3. numberOfPlanets 

4. planetCandidate.weakSecondaryStruct.maxMes 

5. planetCandidate.weakSecondaryStruct.mesMad 

6. binaryDiscriminationResults.longerPeriodComparisonStatistic.significance 

7. binaryDiscriminationResults.shorterPeriodComparisonStatistic.significance 

8. binaryDiscriminationResults.longerPeriodComparisonStatistic.value 

9. binaryDiscriminationResults.shorterPeriodComparisonStatistic.value 

10. chiSquareGof 

11. bootstrap_falseAlarmRate 

12. evenTransitsFit_ratioSemiMajorAxisToStarRadius_value 

13. oddTransitsFit_ratioSemiMajorAxisToStarRadius_value 

14. maxEphemerisCorrelationAllStars 

15. minMesMaxMesRatio 

16. centroidResults.differenceImageMotionResults.mqKicCentroidOffsets.meanSkyOffset.value 

17. edgeStat 

18. allTransitsFit_ratioSemiMajorAxisToStarRadius_value 

19. centroidResults.differenceImageMotionResults.mqKicCentroidOffsets.meanSkyOffset.significance 

20. sesProbability 

21. tEquilibrium 

22. tBrightness 

23. centroidResults.fluxWeightedMotionResults.motionDetectionStatistic.significance 

24. allTransitsFit.modelFitSnr 

25. allTransitsFit.modelChiSquare 

26. centroidResults.fluxWeightedMotionResults.motionDetectionStatistic.value 

27. allTransitsFit_orbitalPeriodDays_value 

28. planetCandidate.modelChiSquare2 

29. numSesInMes 

30. evenTransitsFit_orbitalPeriodDays_value 

31. centroidResults.differenceImageMotionResults.summaryQualityMetric.fractionOfGoodMetrics 

32. oddTransitsFit_ratioSemiMajorAxisToStarRadius_uncertainty 

33. evenTransitsFit_ratioSemiMajorAxisToStarRadius_uncertainty 

34. evenTransitsFit.modelChiSquare 

35. evenTransitsFit.modelFitSnr 

36. modelFitSnrToMesRatio 

37. centroidResults.differenceImageMotionResults.mqControlCentroidOffsets.meanSkyOffset.value 

38. allTransitsFit_planetRadiusEarthRadii_value 

39. centroidResults.fluxWeightedMotionResults.sourceOffsetArcSec.value 

40. allTransitsFit_ratioSemiMajorAxisToStarRadius_uncertainty 

41. effectiveTemp.value 

42. centroidResults.differenceImageMotionResults.mqKicCentroidOffsets.meanSkyOffset.uncertainty 

43. oddTransitsFit.modelChiSquare.reducedchi 

44. oddTransitsFit_planetRadiusEarthRadii_value 

45. evenTransitsFit_semiMajorAxisAu_value 

46. centroidResults.differenceImageMotionResults.mqControlCentroidOffsets.meanSkyOffset.uncertainty 

47. chiSquare7 

48. evenTransitsFit_planetRadiusEarthRadii_value 

49. allTransitsFit_semiMajorAxisAu_uncertainty 
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50. chiSquare1 

51. allTransitsFit_ratioPlanetRadiusToStarRadius_value 

52. oddTransitsFit_ratioPlanetRadiusToStarRadius_value 

53. allTransitsFit_orbitalPeriodDays_uncertainty 

54. radius.value 

55. oddTransitsFit_transitDepthPpm_value 

56. allTransitsFit_transitDurationHours_uncertainty 

57. allTransitsFit_transitIngressTimeHours_value 

58. maxEphemerisCorrelationSameStar 

59. reducedParameterFits_1.modelChiSquare.delta 

60. nPulsesFlaggedAsPlanet 

61. evenTransitsFit_transitDepthPpm_value 

62. depthStat 

63. allTransitsFit_transitDepthPpm_value 

64. centroidResults.fluxWeightedMotionResults.sourceOffsetArcSec.uncertainty 

65. oddTransitsFit_transitIngressTimeHours_value 

66. evenTransitsFit_inclinationDegrees_value 

67. binaryDiscriminationResults.oddEvenTransitDepthComparisonStatistic.significance 

68. evenTransitsFit_transitIngressTimeHours_value 

69. tBrightnessUpperFractionalErrorBar 

70. albedo 

71. evenTransitsFit_transitDurationHours_value 

72. evenTransitsFit_semiMajorAxisAu_uncertainty 

73. epochKjd 

74. allTransitsFit_inclinationDegrees_value 

75. robustStatisticToMesRatio 

76. evenTransitsFit_minImpactParameter_uncertainty 

77. evenTransitsFit_transitDurationHours_uncertainty 

78. allTransitsFit_transitDurationHours_value 

79. oddTransitsFit_transitDurationHours_value 

80. evenTransitsFit_transitEpochBkjd_uncertainty 

81. tBrightnessLowerFractionalErrorBar 

82. evenTransitsFit_transitIngressTimeHours_uncertainty 

83. keplerMag 

84. evenTransitsFit_ratioPlanetRadiusToStarRadius_uncertainty 

85. oddTransitsFit_transitEpochBkjd_uncertainty 

86. rmsCdpp 

87. allTransitsFit_planetRadiusEarthRadii_uncertainty 

88. allTransitsFit_transitDepthPpm_uncertainty 

89. chiSquareDof10 

90. evenTransitsFit_planetRadiusEarthRadii_uncertainty 

91. tEquilibriumLowerFractionalErrorBar 

92. oddTransitsFit_inclinationDegrees_uncertainty 

93. evenTransitsFit_transitDepthPpm_uncertainty 

94. cdppSlope 

95. normCompSum 

96. allTransitsFit_inclinationDegrees_uncertainty 

97. binaryDiscriminationResults.oddEvenTransitDepthComparisonStatistic.value 

98. allTransitsFit_transitIngressTimeHours_uncertainty 

99. mesGrowthStat 

100. evenTransitsFit_inclinationDegrees_uncertainty 

101. allTransitsFit_minImpactParameter_uncertainty 

102. oddTransitsFit_minImpactParameter_value 

103. allTransitsFit_ratioPlanetRadiusToStarRadius_uncertainty 

104. planetCandidate.weakSecondaryStruct.maxMesPhaseInDays 

105. skyGroupId 

106. albedoUpperFractionalErrorBar 



KSCI-19091-001: Autovetter Planet Candidate Catalog                                   7/20/15 

 13 

107. allTransitsFit_minImpactParameter_value 

108. binaryDiscriminationResults.oddEvenTransitEpochComparisonStatistic.value 

109. planetCandidate.weakSecondaryStruct.minMesPhaseInDays 

110. diffRatioSemiMajorAxisToStarRadiusV 

111. planetCandidate.weakSecondaryStruct.maxMesPhaseInDays.normalized 

112. detectedFeatureCount 

113. removedFeatureCount 

114. planetCandidate.suspectedEclipsingBinary 
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6. Building the Training Set 
 

All supervised machine-learning classifiers require a training set of examples with 

known class labels. In this application, the examples are TCEs; there are three classes 

with labels PC, AFP, and NTP. In this section, we describe the construction of the 

training set that was used to produce the autovetter catalog.  The training set contains 

3600 PCs, 9596 AFPs and 2541 NTPs, and is available at NExScI as part of the Q1-Q17 

DR24 TCE table. 

 

The training set and its attributes are ultimately used to build a random forest classifier  

that maps the attributes of any TCE to a predicted class label of either PC, AFP, or NTP. 

It is important to have representative examples of each class that span the entire range of 

expected characteristics. It is also important to develop and include attributes that can 

help identify features characteristic of each of the different classes. In this section we will 

see both aspects of this strategy in action.   

 

The autovetter class definitions differ somewhat from those used by the robovetter to 

create the KOI (Kepler Object of Interest) catalogs [Batalha 2013], [Borucki 2011a], 

[Borucki 2011b], [Burke 2014], [Coughlin 2015], [Mullally 2015], and [Rowe 2015]. The 

robovetter identifies TCEs whose light curves lack a transit signature characteristic of a 

planet or a non-contact eclipsing binary with a Not Transit Like flag. This can include 

TCEs with periodic light curve variations due to contact binaries, starspots, and 

pulsations. The remaining TCEs are christened as KOIs, which are then dispositioned as 

either PC (planet candidates), or FP (False Positives). The robovetter PC class is almost 

the same as that of the autovetter, the only difference being that the autovetter defines a 

PC to have radius smaller than 25 REarth in the training set. The FP class contains 

predominantly TCEs that have transit-like signals consistent with a transiting planetary or 

(non-contacting) stellar companion. The robovetter FP class is a subset of the autovetter 

AFP class, in which we have chosen to also include TCEs produced by periodic signals 

of astrophysical origin that are due to pulsating stars, contact binaries and starspots; the 

robovetter would classify these as Not Transit-Like.   

 

6.1 Training Examples from TCERT 

 

The first step is to include a large number of examples of planet candidates and false 

positives, as determined by the TCERT. These came from the cumulative KOI (Kepler 

Object of Interest) activity table, downloaded on 13 Feb 2015 from the NExScI archive 

after the Q1-Q12 and Q1-Q16 tables were closed as ódoneô. We match the transit 

ephemerides (transit epoch, period, and duration) of the KOIs from the cumulative KOI 

table to those of the Q1-Q17 TCEs. We label the TCERT planet candidates as PC, and 

the false positives as AFP in the training set. 

 

TCERT does not use planet radius to determine whether a TCE should be made a PC. But 

the largest known exoplanet is HAT-P-32b with radius of 22.5 Earth radii. If a transiting 

object has a radius larger than 25 Earth radii, it is likely to be a star rather than a planet. 

We therefore apply a planet radius cut, changing the labels of 135 PC (planet candidate) 

KOIs with radii exceeding 25 REarth to AFP (astrophysical false positive). 
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6.2 Multiple TCEs at the Same Period on a Target 

 

Often, the secondary of an eclipsing binary or a residual signal from a primary transit will 

generate one or more TCE(s) with similar characteristics. Other cases of astrophysical 

origin that might generate multiple TCEs at the same period on a target star include 

contact binaries, starspots, and pulsations. To identify this type of TCE, we calculate a 

statistic called minLongerShorterPeriodSignficance that tests whether the TCEôs 

period is close to that of another TCE on the same target star, and add it to the attributes 

matrix. It turns out that minLongerShorterPeriodSignficance is ranked as the most 

important attribute (see Table 1). Another way to identify this type of TCE is to calculate 

the Pearsonôs correlation coefficient between its ephemeris and the ephemerides of each 

of the other TCEs on the same star. For each TCE, we calculate the maximum of these 

correlation coefficients,  maxEphemerisCorrelationSameStar and add this to the 

attributes matrix.  If the TCEôs ephemeris is highly correlated with that of another TCE 

on the same star, it is most likely due to a residual of another TCE. The attribute 

maxEphemerisCorrelationSameStar is ranked #58 in importance (see Table 1).  By 

including in the training set a sufficient number of examples of TCEs with periods close 

to those of other TCEs on the same target (these are common among the TCERT false 

positives), we trained the autovetter to classify similar TCEs as AFPs.   

 

6.3 Contaminated TCEs 

 

It is possible for a bright star with a periodic signal (such as an eclipsing binary or an RR 

Lyrae variable) to contaminate ï i.e. imprint its periodic signature on ï other targets on 

the focal plane. Flux from the PRF (Point Response Function) of a bright star, or flux 

from an optical ghost can overlap the PRF of a target star. Optical ghosts are caused by 

reflections from the CCD surface to the field-flattening lenses (or the Schmidt corrector 

lens) and back to the CCD. The reflection creates an out-of-focus image of the source 

star. Flux from an optical ghost can contaminate stars many pixels away from a bright 

source on the focal plane. For a detailed study of this phenomenon, see [Coughlin 2014].  

 

We found 1437 TCEs that were ephemeris-matched to eclipsing-binary contaminators; 

these were labeled as AFP and added to the training set if they were not already included 

among the TCERT false positives. 

 

Another class of contaminated TCEs has a spurious 459-day period, which has been 

identified as an instrumental systematic; 265 TCEs whose light curves show this 

signature were identified. Since these signals are not astrophysical in origin, we labeled 

them as NTP and included them (if they were not already present) in the training set.   

 

210 TCEs were found to be ephemeris-matched to an RR Lyrae contaminator and were 

also labeled as NTP and included in the training set.  However, to be consistent with our 

classification scheme we should have labeled them as AFP (since their periodicity is 

astrophysical in origin). We believe that changing the labels of these TCEs to AFP in 

future training sets might lead to improvement in the autovetterôs ability to separate the 

AFP and NTP classes.  
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A TCE that shows a high correlation with a TCE on another target is most likely to be 

contaminated by mechanisms such as the ones discussed above. In order to improve the 

autovetterôs sensitivity to  contamination, we computed a statistic called 

maxEphemerisCorrelationAllStars, which is the maximum of the Pearsonôs correlation 

coefficient of each TCEôs ephemeris with the ephemerides of all TCEs on other stars. We 

appended this column vector to the attributes matrix. Of all the attributes, 

maxEphemerisCorrelationAllStars ranks #14 in importance (see Table 1). 

 

6.4 Other types of TCEs that correspond to Non-Transiting Phenomena (NTP) 

  

The LPP (locality preserving projection) statistic has been shown to provide excellent 

separation between light curves with and without a transit signal, so it should effectively 

distinguish NTPs from AFPs and PCs. We included the LPP statistic as a column in the 

attributes matrix, so that the autovetter could learn to make use of it. It is ranked at #2 in 

attribute importance (see Table 1). The LPP statistic is presented in [Thompson 2015]. 

 

Another tool for identifying TCEs of class NTP is the bootstrap test, which identifies 

TCEs whose false alarm probability exceeds some threshold, making them highly likely 

to be statistical false alarms. We use the newest, corrected version of the bootstrap 

(developed for the 9.3 pipeline release) and applied a false alarm probability threshold of 

10
-11

. TCEs that failed the bootstrap test at a threshold of 10
-11 

were labeled as NTP and 

included in the training set. For a discussion of the bootstrap, see [Jenkins 2015a] and 

[Seader 2015], as well as the Appendix of [Jenkins 2015b]. 

 

In the Q1-Q12 catalog generation process, a large number of TCEs were visually 

inspected by the TCERT team and classified as ónot KOIsô. We ephemeris-matched 1790 

of these TCEs to the Q1-Q17 TCEs. We labeled as NTP and included in the training set 

any of these that were not already included in the training set as AFPs. 

 

Sometimes a TCE is produced by an event that is not physically consistent with a transit. 

The MES ratios test computes ratios of the robustStatistic and modelFitSnr to the 

maxMES (maximum multiple-event statistic). These three attributes are provided by the 

DV (data validation) component of the Kepler pipeline. A low ratio of robustStatistic or 

modelFitSnr to the maxMES indicates that the transits are of inconsistent depth, or that 

the transit pulse is not well matched to a physically realistic transit waveform. We found 

171 TCEs for which both ratios were less than 0.5; these were labeled as NTP and 

included in the training set. We note that no PCs from the NExScI catalog failed the MES 

ratios test. We included both the ratio of the robustStatistic to the maxMES and the 

ratio of the modelFitSnr to the maxMES in the attributes matrix so that the autovetter 

can learn to make use of them.  These ratios rank at #75 and #36, respectively, in attribute 

importance (see Table 1). The MES ratios test is discussed in more detail in [Jenkins 

2015c]. 

 

Another class of objects that we label as NTP in the training set are KOIs from the 

NExScI cumulative table that had the ónot-transit-likeô flag set to true, and had both 
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ósignificant secondaryô flag and ócentroid offsetô flags set to false, because the NTP class 

should logically include these.  

 

 

6.5 Bad TCEs 

 

Finally, there were 74 TCEs that were determined by TCERT to be óbad TCEsô  because 

their detections were triggered by residuals of fitted transits; these were excluded from 

the training set. 
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7. Posterior Class Probabilities 
 

The output of the random forest classifier depends on the prior class probabilities of the 

training data set. If these are different than those of the TCEs we want to classify, then 

the classification accuracy may be sub-optimal. For example, if the data to be classified 

has a greater proportion of NTPs than the training set, a classifier that is more biased 

toward NTPs could have a lower classification error than the current random forest. We 

can correct for such biases by re-weighting the vote fractions so that NTP is chosen at a 

lower vote threshold.  Starting with initial estimates for the priors for the class 

probabilities of PC, AFP, and NTP, it is possible to re-weight the random forest vote 

fractions so as to minimize the total number of misclassifications across the training set 

and estimate the prior class probabilities of the whole TCE population. An iterative 

bootstrap approach to accomplish this optimization is outlined in [Jenkins 2015c].  

 

With knowledge of prior class probabilities one can proceed to estimate posterior class 

probabilities via Bayesô Rule. Posterior class probabilities reflect our confidence that the 

TCE belongs to the predicted class; they are an internal measure of the reliability of the 

classification. 

 

Figures 3 and 4 display the autovetter classification results in the form of a ternary 

diagram (Cf. section 8). Vertices of the ternary diagram correspond to each of the three 

classes; at a vertex there is a probability of one to be in the associated class, and a 

probability of zero to be in any other class. We would expect to have high confidence in 

the predicted class of a TCE if it is near a vertex and much lower confidence if it is near a 

decision boundary (the lines separating the colored regions). How this intuition can be 

quantified to give posterior class probabilities for every TCE is shown in [Jenkins 2015c]. 

The key is the development of a non-Euclidean distance metric in the phase space of the 

ternary diagram, leading to estimates of class posterior probability densities as a function 

of the reweighted class votes. With a method to compute posterior probabilities in hand, a 

naive Bayes classifier is overlaid on the random forest vote fractions, and the MAP 

(maximum a posteriori probability) that gives optimal agreement with the random forest 

is determined. 

 

Posterior class probabilities lead to an important refinement of occurrence rate 

calculations. Instead of giving equal weight to each PC detection, it is possible to count 

each PC detection as a ófractional planetô with the fraction equal to the PC posterior 

probability, ranging from zero to one.  In this scheme, planet candidates with low 

posterior probabilities naturally influence the occurrence rate less than those with high 

posterior probabilities. Planet candidates in the critical regimes of low SNR, long period, 

and small radius are counted but prevented from severely skewing the occurrence rate, as 

would happen if each detection was counted as one planet. 

 

The foregoing discussion naturally leads to a further possibility: abandon votes and 

classifications altogether, and instead count every TCE (as a fraction of a planet equal to 

its PC posterior probability) in the occurrence rate. For example, suppose a TCE is near a 

decision boundary (see Figure 3), with 50% AFP posterior probability, 40% PC posterior 

probability, and 10% NTP probability, and is classified as AFP by the optimal weighted 
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votes.  This TCE would therefore contribute 40% of a detected planet in an occurrence 

rate calculation. Extending this approach to include TCEs near the decision boundaries 

might be worthwhile, but including all non-PC TCEs no matter how small the posterior 

PC probability could significantly skew the results of an occurrence calculation.   
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8. Autovetter Results for the Q1-Q17 DR24 TCEs 
 

In this section we present  a statistical analysis of the autovetter predicted classifications 

of both the training set TCEs and the TCEs of UNKNOWN class. Then we turn to a 

comparison of the performance of the autovetter vs. the classifications derived from the 

robovetter [Coughlin 2015]. 

 

8.1 Performance of the Autovetter on the Training Set 

 

The results of applying the autovetter classifier to the training set are expressed in terms 

of a confusion matrix in Table 2. Rows 1, 2, and 3 correspond to true class PC, AFP, and 

NTP. Columns 1, 2, and 3 correspond to predicted class PC, AFP, and NTP. For example, 

in column 1 we see that 107 AFP examples and 5 NTP examples were incorrectly 

classified as PC. In row 3 we see that of 2541 (5 + 77 + 2459) TCEs that are members of 

the NTP class, 5 were misclassified as PC and 77 were misclassified as AFP.  The 

diagonal elements show the number of each class that were correctly classified, and the 

off-diagonal elements show the misclassifications. For example, the (3,3) element shows 

that 2459 TCEs were correctly classified as NTP; the (3,1) element shows that 5 TCEs 

that were labeled as members of the class NTP in the training set were incorrectly 

predicted to be members of the class PC.  

 

Table 2. Autovetter Confusion Matrix 

 Predicted class PC Predicted class AFP Predicted class NTP 

True class PC 3495 96 9 

True class AFP 107 9365 124 

True class NTP 5 77 2459 

 

The confusion rate matrix in Table 3 is derived from the confusion matrix by 

normalizing each row by the total number of elements in the corresponding true class.  

 

Table 3. Autovetter Confusion Rate Matrix 

 Predicted class PC Predicted class AFP Predicted class NTP 

True class PC 0.971 0.027 0.002 

True class AFP 0.011 0.976 0.013 

True class NTP 0.002 0.030 0.968 

 

From the confusion rate matrix, we compute the classification error rates, shown in Table 

4.  The overall error rate is the percentage of the training examples that were incorrectly 

classified. The PC, AFP and NTP error rates are the percentages of PC, AFP and NTP 

training examples that were incorrectly classified. Because the error rates were obtained 

using óout-of-bagô samples, they also predict the ógeneralization errorô, which is the  

performance that we expect when the autovetter classifier is applied to an ensemble of 

TCEs of UNKNOWN class. No cross-validation is necessary. The foregoing is true as 

long as the training set contains a representative sample of TCEs of UNKNOWN class. 

 

The PC false alarm rate is the percentage of training examples that were incorrectly 

classified as PC; if the UNKNOWN TCEs have class frequencies that are the same as 
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those of the training set, then weôd expect the same PC false alarm rate when the 

classifier is applied to the UNKNOWN TCEs. 

 

Table 4. Autovetter Error Rates 

Overall error rate    2.7 % 

PC error rate    2.9 % 

AFP error rate    2.4 % 

NTP error rate    3.2 % 

PC false alarm error rate  3.1 % 

 

8.2 Classifying the Unknown TCEs 

 

Figure 2 shows the autovetter catalog of 3900 planet candidates represented in planet 

radius vs. orbital period phase space.  There were a total of 20367 TCEs, of which 15737 

were in the training set and 4630 were of UNKNOWN class. From the training set, the 

autovetter classified 3495 of the PCs and 112 of the AFPs and NTPs as planet candidates 

(see Table 2). 293 of the UNKNOWN TCEs were also classified as planet candidates.  

 

Since the PCs in the training set are from past search activities and generally represent 

the ólow-hangingô fruit, we expect that on average they should have higher SNR and 

larger radii than the PCs found among the UNKNOWN TCEs. Indeed, we find that the 

median radius and maximum MES ( a proxy for SNR) are 2.0 Rearth and 22.1 for the 

training set PCs, compared to 1.2 Rearth and 8.7 for the 293 newly classified PCs. 

 

If a planet candidate can be validated by external means such as radial velocity detection, 

or internal means (transit timing variations) it is given the NExScI classification of 

CONFIRMED. It is of interest to check how the autovetter classified these. We find that 

of the 972 TCEs classified as CONFIRMED,  the autovetter classified 957 (98.46%) as 

PC, 14 (1.44%) as AFP, and 1 (0.10%) as NTP. 
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Figure 2. The autovetter catalog of 3900 planet cand idates. Green points  are 

TCEs that are PCs in the training set; blue points  are AFPs and NTPs in the 

training set. Red points  are TCEs that were not in the training set but were 

classified as PCs. Open black rings surround points of PCs with radius smaller  

than 2.5 Rearth and perio d longer than 50 days, a range that is  of great 

interest in the calculation of planetary occurrence rates.   
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Figures 3 and 4 show ternary diagrams for the TCEs in the training set and TCEs of 

previously unknown class. Since the PC, AFP and NTP vote fractions add to one, only 

two are independent; we have chosen to display the NTP vote fraction along the abscissa 

and the PC vote fraction along the ordinate axis.  Perfect PC candidates would be at the 

top right corner, perfect AFP candidates at the lower right corner, and perfect NTP 

candidates at the lower left corner. The densities are generally concentrated toward the 

corners of the triangle, and away from the decision boundaries (lines separating the 

colored regions), which is the hallmark of a good classifier. Classifications are the least 

certain for points that are near or on the decision boundaries. 
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Figure 3. Autovetter classification of TCEs in the training set. Note that the 

densities are concentrated near the corners and away from the decision 

boundaries (the lin es separating the three colored regions ŕ blue for PC, 

green for AFP, and red for NTP ). Separation of the three classes is observed to 

be quite good overall. There is  some overlap b etween AFP and NTP and 

between AFP and PC; but NTP is well separated from PC.  Classifications are 

the least certain f or points that are nea r or on the decision boundaries . 
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Figure 4. Autovetter classification of TCEs of UNKNOWN c lass. Again, the 

densities are concentrated near the corners of the triangle and away from the 

decision boundaries.  Classifications are the least certain for points that are 

near or on the decision boundaries.  
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Histograms of posterior probability to be in the PC class are shown in Figures 5, 6, and 7 

for TCEs that are classified as PC, AFP and NTP, respectively. Evidently, a TCE is 

overwhelmingly likely to be a PC if classified as a PC, and overwhelmingly unlikely to 

be a PC if not classified as a PC. 

 

 

Figure 5. PC posterior probability for TCEs classified as PC. Most probabilities 

are quite close to 1, tho ugh a  narrow tail extends downward . 
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Figure 6. PC posterior probability for TCEs classified as AFP. The probabilities 

are concentrated near zero, tho ugh a narrow tail extends upward . 


















