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1. Introduction 
 
This document describes the data produced by the Statistical Bootstrap Test over the final 
three Threshold Crossing Event (TCE) deliveries to NExScI: SOC 9.1 (Q1–Q16)1 
(Tenenbaum et al. 2014), SOC 9.2 (Q1–Q17) aka DR242 (Seader et al. 2015), and SOC 
9.3 (Q1–Q17) aka DR253 (Twicken et al. 2016). The last few years have seen significant 
improvements in the SOC science data processing pipeline, leading to higher quality light 
curves and more sensitive transit searches. The statistical bootstrap analysis results 
presented here and the numerical results archived at NASA’s Exoplanet Science Institute 
(NExScI) bear witness to these software improvements. This document attempts to 
introduce and describe the main features and differences between these three data sets as 
a consequence of the software changes. 
 
We first describe the theory underlying the statistical bootstrap test, and then discuss, 
compare and contrast the results for all three TCE data sets. There are four quantities 
computed for each Threshold Crossing Event (TCE) produced by the Kepler pipeline and 
they are available at the NExScI Exoplanet Archive4 as four separate columns in the TCE 
table: boot_fap, boot_mesthresh, boot_mesmean, and boot_messtd (see Section 4).  
 
Note that the SOC 9.2 Q1–Q17 DR24 bootstrap results are being redelivered in order to 
improve precision as well as for consistency with the other data sets. All three data sets 
now use all available data for the bootstrap analysis, rather than just the quarters 
containing transit features, as was the case for the previous version of the SOC 9.2 
results. Using all available data improves the precision of the bootstrap results for TCEs 
with periods longer than ~93 days as the empirical distributions of null statistics thus 
obtained can have many more samples, especially for the longest orbital periods. In 
addition, all three sets of bootstrap results have been produced using the SOC 9.3 
algorithm and parameter settings. 
 
We begin with an overview of the Transiting Planet Search (TPS) module of the Kepler 
data processing pipeline in Section 2 and then provide the mathematical development of 
the statistical bootstrap algorithm in Section 3. The catalog entries for the bootstrap 
analysis results are defined in Section 4. The bootstrap analysis results are described for 
the SOC 9.1, SOC 9.2 and SOC 9.3 data sets in Section 5. Section 6 investigates the 
precision of the bootstrap results as a function of the transit duration and number of 
transits. We provide detailed results for a sample TCE in section 7. 
 
                                            
1 http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=q1_q16_tce 
2 http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=q1_q17_dr24_tce 
3 http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=q1_q17_dr25_tce 
4 http://exoplanetarchive.ipac.caltech.edu/index.html 
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2. Overview of Transiting Planet Search 
 
To search for transit signatures, TPS employs a bank of wavelet-based matched filters 
that form a grid on a three-dimensional parameter space of transit duration, orbital period, 
and phase (Jenkins 2002; Jenkins et al. 2010). TPS dynamically characterizes the 
observation noise underlying each flux time series and correlates the reference transit 
pulse template with the flux time series, accounting explicitly for the correlation structure 
of the observation noise. This process yields a single event statistic time series, which 
consists of a component that measures the degree to which the reference transit pulse is 
correlated with the data, and a component that represents the expected signal-to-noise 
ratio (SNR) of the reference transit pulse. The single event statistics are folded at each 
trial orbital period and thresholded to identify statistically significant, transit-like features 
or threshold-crossing events (TCEs), which are then further scrutinized by the Data 
Validation (DV) module. DV subjects each TCE to a suite of diagnostic tests to establish 
or break confidence in the planetary nature of the signature, and fits a limb-darkened 
transit model to each detected transit-like feature (Wu et al. 2010, Tenenbaum et al. 
2010). The threshold, η = 7.1σ, is designed to control the false alarm rate to no more than 
~6.24×10-13 and thereby restrict the number of statistical false alarms to no more than one 
over the entire mission, assuming the observation noise is well modeled as Gaussian, 
though not necessarily white or stationary noise (Jenkins, Caldwell and Borucki 2002). 
 
Since TPS searches each light curve by folding the single-transit detection statistics at 
each trial orbital period, the detection statistic is referred to as a multiple event statistic 
(MES). Detections in TPS are made under the assumption that the pre-whitening filter 
applied to the light curve yields a time series whose underlying noise process is 
stationary, white, Gaussian, and uncorrelated. When the pre-whitened noise deviates from 
these assumptions, the detection thresholds are invalid and the false alarm probability 
associated with such a detection may be significantly higher than that for a signal 
embedded in true, white Gaussian noise (WGN). The Statistical Bootstrap Test, or the 
Bootstrap, is a way of building the distribution of the null statistics from the data so that 
the false alarm probability can be estimated for each TCE based on the observed 
distribution of the out-of-transit statistics using a statistical approach introduced by 
Ephron (1979). Additionally, the threshold (nominally 7.1 σ) required to control the false 
alarm rate to ~6.24×10-13 can be recalibrated based on the actual observations. 
 
To introduce the Statistical Bootstrap Test, consider a TCE exhibiting p transits of a 
given duration within its light curve. In this analysis, the light curve is viewed as one 
realization of a stochastic process. Further, consider the collection of all p-transit 
detection statistics that could be generated if we had access to an infinite number of such 
realizations. To approximate this distribution we formulate the single event statistic time 
series for the light curve and exclude points in transit (plus some padding) for the given 
TCE. Bootstrap statistics are then generated by randomly drawing from the single event 
statistics p times with replacement to formulate the p-transit statistic (i.e., the MES). 
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Since the single event statistics encapsulate the effects of local correlations in the 
background noise process on the detectability of transits, so does each individual 
bootstrap statistic. So long as the orbital period is sufficiently long (generally longer than 
several hours), the single event statistics are uncorrelated and the MES can be considered 
as formed by p independent random deviates from the distribution of null single event 
statistics. 
 
Jenkins et al. (2002) formulated a bootstrap test for establishing the confidence level in 
planetary transit signatures identified in white, but possibly non-Gaussian noise. Jenkins 
(2002) extended this approach to the case of non-white noise. In both cases, the bootstrap 
false alarm rate as a function of the MES of the detected transit signature was estimated 
by explicitly generating individual bootstrap statistics directly from the set of out-of-
transit data. This direct bootstrap sampling approach can become extremely 
computationally intensive as the number of transits for a given TCE grows beyond ~15. 
The number of individual bootstrap statistics that can be formed from the m out-of-transit 
cadences of a light curve and the p transits is mp, which is ~2.9×1048 statistics for 10 
transits and four years of Kepler data. An alternative, computationally efficient method 
was implemented by formulating the bootstrap distribution in terms of the probability 
density function (PDF) of the single event detection statistics. The distribution for the 
MES as a function of threshold was then obtained from the distribution of single event 
statistics. 
 
3. Theoretical Development 

In this section we develop the theoretical underpinnings of the Statistical Bootstrap Test, 
which is based on a mathematical model of the transiting planet search algorithm. 
Additional background on the historical development of the statistical bootstrap in the 
context of transiting planet searches can be found in Jenkins, Caldwell and Borucki 
(2002), Jenkins (2002), and Seader et al. (2015). Here we summarize and expand upon 
previous work by detailing more recent developments in the implementation of the 
algorithm. 
 
TPS constructs a (multiple event) detection statistic, Z, for each trial transit pulse 
duration, orbital period and orbital phase. The MES, Z, can be expressed as 
 
 𝑍 = 𝐶 𝑖!∈! 𝑁 𝑖!∈! , (1) 
 
where S is the set of transit times that a single period and epoch pair select out, C(i) is the 
correlation time series formed by correlating the whitened data to a whitened transit 
signal template with a transit centered at the ith timestep in the set S, and N(i) is the 
template normalization time series. The square root of the normalization time series, 
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𝑁 𝑖 , is the expected value of the MES or SNR for the reference transit pulse.5 
 
If the observation noise process underlying the light curve is well modeled as a Gaussian 
noise process that is possibly non-white and/or non-stationary, then the single event 
statistics will be zero-mean, unit-variance Gaussian random deviates. The false alarm rate 
of the transit detector would then be described by the complementary distribution for a 
zero-mean, unit-variance Gaussian distribution: 

 
FZ (Z ) = 1

2
erfc Z / 2( ) , (2) 

where erfc(⋅)  is the standard complementary error function. If the power spectral density 
of the noise process is not perfectly captured by the whitener in TPS, then the null 
statistics will not be zero-mean, unit-variance Gaussian deviates. A bootstrap analysis 
allows us to obtain a data-driven approximation of the actual distribution of the null 
statistics, rather than relying on the assumption that the pre-whitener is perfect. 
 
Let Zp denote a p-transit multiple event statistic. The random variable Zp is a function of 
the random variables corresponding to the correlation and normalization terms in the 
single event statistic time series, 𝐶(𝑖),𝑁(𝑖) , and is thus governed by a bivariate 
distribution with components  

 
Cp = C(i)

i∈S
∑  and ∑

∈

=
Si

p iNN )( , (3) 

given the definition of the multiple event statistic in Eq. 1. The joint density of Cp and Np 
can be determined from the joint density of the single event statistic components C and N 
as 

 
fCp ,Np

(Cp,Np ) = fC,N (C,N )∗ fC,N (C,N )∗...∗ fC,N (C,N ),  (4) 

where ‘∗ ’ is the convolution operator and the convolution is performed p times. This 
follows from the fact that the bootstrap samples are constructed from independent draws 
from the set of null (single event) statistics with replacement.6  Given that convolution in 
the time/spatial domain corresponds to multiplication in the Fourier domain, Equation (4) 
can be represented in the Fourier domain as 
                                            
5 The inverse of 𝑁 𝑖  can be interpreted as the effective, white Gaussian noise “seen” 
by the reference transit and is the definition for the combined differential photometric 
precision (CDPP) reported for the Kepler light curves at 3, 6, and 12 hours duration. 
6 In this implementation, we choose to assume that the null statistics are governed by a 
single distribution.  If this is not the case (for example, if the null statistic densities vary 
from quarter to quarter), then Equation (4) could be modified to account for the disparity 
in the relevant single event statistics in a straightforward manner. 
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ΦCp ,Np

=ΦC,N ⋅ΦC,N ⋅... ⋅ΦC,N =ΦC,N
P , (5) 

where ΦC,N =ℑ{ fC,N} is the 2-D Fourier transform of the joint density function fC,N . 
Here, the arguments of the Fourier transforms of the density functions have been 
suppressed for clarity. The use of 2-D fast Fourier transforms results in a highly tractable 
algorithm from a computational point of view. Figure 1 illustrates the construction of the 
MES distribution for the case of a 4-transit TCE. 
 

 
Figure 1. False color image of the correlation component C versus the normalization component N 
for the bivariate distributions for the single event null statistics and for the 4-transit multiple event 
statistic distribution for one TCE. Although the 1-transit distribution is highly irregular, that for the 
4-transit distribution is much more symmetric and Gaussian, as follows from the central limit 
theorem.  
 
The implementation of Equation (5) requires that a 2-D histogram be constructed for the 

pairs over the set of single event null statistics. Care must be taken to manage the 
size of the histogram to avoid spatial aliasing as the use of fast Fourier transforms (FFTs) 
corresponds to circular convolution. We chose to formulate the 2-D grid to allow for as 
high as p = 8 transits in order to control the memory required for the computations. The 
intervals covered by the realizations (i.e., the support) for each of C and N were sampled 
with 256 bins, and centered in a 4096 by 4096 array. When p > 8, it is necessary to 
implement Equation (5) iteratively in stages after each of which the characteristic 

{C,N}
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function is transformed back into the spatial domain, then bin-averaged by a factor of 2, 
and padded back out to the original array size. Care must also be taken to manage 
knowledge of the zero-point of the histogram in light of the circular convolution, as it 
shifts by 1/2 sample with each convolution operation in each dimension.  
 
Once the p-transit 2-D density function fCp ,Np

(Cp,Np )  is obtained, it can be “collapsed” 
into the sought-after 1-D density, 𝑓!(𝑍), by mapping the sample density for each cell with 
center coordinates {Ci,N j}  to the corresponding coordinate 𝑍!,! = 𝐶! 𝑁!, and 
formulating a histogram with a resolution of, say, 0.1σ in Z by summing the resulting 
densities that map into the same bins in Z. Due to the use of FFTs, the precision of the 
resulting density function is limited to the floating-point precision of the variables and 
computations, which is ~2.2×10-16 for double precision arithmetic. For small p, the density 
may not reach the limiting numerical precision because of small number statistics, and for 
large p, round-off errors can accumulate below about 10-14. However, the bootstrap results 
can be extrapolated to high MES values by fitting the mean, µ, and standard deviation, σ, 
of a Gaussian distribution to the upper tail of the empirical distribution in the region 10-4 ≤ 
FZ  ≤ 10-13 using the standard complementary error function:  

 FZ (Z ) = 0.5erfc (Z −µ) / 2σ( ) .
 (6) 

Note that the fitted distribution can only be used to extrapolate the upper tail of the 
bootstrap distribution, and is not valid for describing the core of the empirical 
distribution, as it is not constrained to fit the latter below 10-4. 
 
In order to simulate the use of χ-square vetoes (Seader et al. 2013) that effectively 
remove strong transient and impulsive features that trigger TPS but which are 
inconsistent with physical transit signatures, we pre-filtered the single event statistic time 
series to remove the three most positive peaks and their “shoulders” down to 2σ. The 
three most negative peaks were also handled in a similar fashion to avoid biasing the 
mean of the null statistics in a negative direction. We also identified and removed points 
with a density of zero-crossings that fell below 1/4 that of the median zero-crossing 
density. This step removed single event statistics in regions where the correlation term 
experienced strong excursions from zero due to unmitigated sudden pixel sensitivity 
dropouts and thermal transients near monthly and quarterly boundaries. Typically, these 
pre-filters retained more than 99% of the original out-of-transit single event statistics.  
 
 
4. Column Definitions 

There are four quantities derived from the bootstrap test that are present in the TCE 
Table. These four quantities are defined as follows:   
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boot_fap: The false alarm probability is the integral of the distribution of the null MES 
statistics above the MES of the detection. The distribution of the null MES statistics is 
constructed by the bootstrap test. Nominally, the null MES is Gaussian distributed with 
zero mean and unit variance. In reality however, due to imperfections in the whitening 
process, uncorrected systematics, etc., the distribution of the null MES deviates from this 
nominal distribution form.  
 
boot_mesthresh: The search threshold required, given the distribution of the null MES 
estimated from the bootstrap algorithm, to achieve the same false alarm probability as 
that of a 7.1 σ  threshold on a Gaussian distribution with zero mean and unit variance 
(𝐹!~6.24×10-13).  
 
boot_mesmean: The mean of the best-fit Gaussian distribution to the upper tail 
10!!" ≤ 𝐹! ≤ 10!!  of the null MES distribution estimated by the bootstrap. This 

quantity, together with the quantity boot_messtd, is useful for extrapolating the false 
alarm probability to values less than 10-13 and for high MES values. 
 
boot_messtd: The standard deviation of the best-fit Gaussian distribution to the upper tail 
10!!" ≤ 𝐹! ≤ 10!!  of the null MES distribution estimated by the bootstrap. 

 
In cases where there is not enough data to run the bootstrap, the false alarm probability is 
set to -1. In some cases, the bootstrap test can’t use the data from the distribution it has 
constructed to interpolate for the false alarm probability; rather, it must extrapolate 
because the MES is outside the regime that the distribution covers. To do the 
extrapolation, a robust fit of an error function is done in log space to the Cumulative 
Distribution Function (CDF) of the MES with 10!!" ≤ 𝐹! ≤ 10!!. The parameters of the 
fit are used to calculate the false alarm probability for the MES of the detection. Features 
in the CDF can sometimes cause the fit to be poor, which in turn causes the fit parameters 
and resulting false alarm probabilities to also be poor.  
 
5. Results 

This section describes the results for each TCE data set and compares and contrasts the 
results across the three data sets. 
 
5.1. Q1–Q16 

 
Figures 2 and 3 show the false alarm probability for 16,014 TCEs as a function of the 
MES value of each TCE. A small fraction of the TCEs’ light curves had too few points 
remaining after removing in-transit and neighboring points to conduct a bootstrap 
analysis. We matched the Q1–Q16 TCEs against the cumulative KOI table through Data 
Release 24 (Coughlin et al. 2016) on NExScI’s exoplanet archive. The KOIs (consisting 
of a mixture of planet candidates, confirmed/validated planets and astrophysical false 
positives) tend to lie in a band whose left edge is approximately enveloped by the curve 
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expected for zero-mean, unit variance (ZMUV) Gaussian noise. At low SNR, there is a 
small population of planet candidates and astrophysical false positives with false alarm 
rates above 10-10 that are embedded in a much larger population of TCEs that form a 
horizontal “cloud” where the false alarm rate is nearly independent of the MES. Visual 
inspection of the light curves underlying points in this “cloud” indicate that most of these 
light curves are polluted with residual stellar variability and flares. Many appear 
consistent with being red giants with power spectral densities richly populated by 
pressure mode oscillations. The whitener in TPS is not designed to handle such noise, 
resulting in spurious detections.  
 

 
Figure 2. False alarm rate as a function of the multiple event statistic (MES) for each of the 16,014 
TCEs returning bootstrap results in the Q1–Q16 transiting planet search. The points are colored by 
the dispositions of the TCEs in NExScI Exoplanet Archive’s cumulative KOI table through DR24. 
The magenta line indicates the expected value for a zero-mean, unit-variance Gaussian process.  
 
Most of the points falling below the ZMUV curve are very short period TCEs with 500 or 
more transits. These targets have little data left after the removal of in-transit samples and 
the remaining single event null statistics are slightly biased with a mean below zero. For 
periods sufficiently short so that there are ~500 or more transits, computing the bootstrap 
distribution for the MES involves raising the 2-D characteristic function for the single 
event null statistics to the number of observed transits (see Eq. 5). This process yields a 
distribution with a mean that is significantly negative. This results in false alarm rates 
well below those expected for ZMUV noise for such cases. 
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Figure 4 shows a plot of the false alarm rate as a function of the bootstrap threshold 

 
Figure 3. Zoomed view of Figure 2. Top panel: false alarm rate as a function of the MES for each 
of the Q1–Q16 TCEs. Bottom panel: Density plot of the false alarm rate as a function of the 
MES. Note that the two principal populations, the horizontal branch with little dependency on 
MES and the one that is approximately enveloped by the expected curve for ZMUV Gaussian 
noise both merge at low SNR (<9 σ ) near log(FAR) = 10-10. 
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(boot_mesthresh) for the SOC 9.1 Q1–Q16 TCEs, colored by disposition for the KOIs 
matched against the TCE ephemerides.7 Note that some confirmed/validated planets and 
planet candidates have thresholds above ~10σ. The confirmed planets include Kepler-90d 
and h, Kepler-30c and d, and Kepler-444e and f. All of these systems exhibit strong 
transit timing variations and therefore the use of a linear ephemeris to mask out transits 
leaves residual transits in the null statistic time series, inflating the bootstrap thresholds 
and false alarm rate estimates for these cases. 
 

 

 
Figure 4. False alarm rate as a function of the bootstrap threshold for the Q1–Q16 TCEs. For the 
KOIs recovered in this data set, the points are colored by the disposition in the cumulative DR24 
KOI table. The vertical line at 7.1σ  represents the threshold expected for ZMUV Gaussian noise. 
 
We note that the bootstrap threshold (boot_mesthresh) is negative for a few stars. This is 
most often the case for very short orbital periods (≲5 days) where the residual single 
event statistics are so cut up by the removal of transit signatures that they are biased 
negative relative to the true mean and the resulting N-transit statistics are significantly 
skewed. This is a limitation of the methodology, but is expected behavior. The 
boot_mesmean can be negative as well because the upper tail of the empirical bootstrap 
distribution is being modeled and the fit is unconstrained. The model is only useful for 
extrapolating to MES values above that observed in the empirical distribution where the 

                                            
7 For this document, a match was considered valid if both the epoch and the period of the TCE 
were within 0.1 days of the given KOI. 
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false alarm rate is ≪10-4. If a valid fit cannot be obtained for some reason, then the 
Gaussian fit parameters are gapped (i.e., marked as unpopulated). 
 
While the bootstrap results for the well-behaved transit signatures and the spurious 
detections in the horizontal cloud are not well separated at low SNR (<9 σ), the bootstrap 
false alarm probabilities are strong indicators for high SNR TCEs. Improvements in the 
quality of the light curves and the transiting planet search codebase dramatically improve 
the situation, as will be seen in Section 5.3. 
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5.2. SOC 9.2 Q1–Q17 DR24 

The SOC 9.3 bootstrap algorithm was run on the SOC 9.2 Q1–Q17 DR24 TCEs 
previously and archived at NExScI (see KSCI-19086-003). That set of bootstrap results 
only included quarters with transits in the calculation. This note documents redelivery of 
the bootstrap results for this data set using all available data from Q1–Q17 in the 
bootstrap analysis, for consistency with the other two data sets delivered at this time.  
 
The results are similar to those for the Q1–Q16 data set, although since the SOC 9.2 
bootstrap was used as a veto in TPS for this run, the horizontal “cloud” of high MES/high 
false alarm rate objects is missing, as almost all of these objects were rejected in TPS and 
not presented to DV for further analysis and characterization (see Christiansen et al. 2016 
for a detailed discussion of the impact of the bootstrap veto on completeness of the transit 
search). Figures 5 and 6 present the bootstrap false alarm rate as a function of the MES, 
while Figure 7 presents the bootstrap false alarm rate as a function of the bootstrap 
threshold. 
 

 
Figure 5. False alarm rate as a function of the MES for each of the 19,856 TCEs returning bootstrap 
results in the Q1–Q17 DR24 transiting planet search. The points are colored by KOI disposition. The 
magenta line indicates the expected value for a ZMUV Gaussian process. 
 
Because the horizontal “cloud” feature is completely absent from Figure 5, we can 
conclude that the bootstrap is quite effective at filtering non-transit-like features 
associated with this population from the TPS results. The KOIs identified in the SOC 9.2 
DR24 TCEs fall along a band that is enveloped on the left by that expected for ZMUV 
Gaussian noise. As with the SOC 9.1 results, none of the confirmed or validated planets  
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have bootstrap false alarm rates above 10-12, suggesting that the bootstrap can be used to 
screen against spurious TCEs, although it is unclear whether this can be done without 

 

 
Figure 6. Zoom of Figure 5. Top panel: false alarm rate vs. MES for the 19,856 SOC 9.2 Q1–Q17 
DR24 TCEs. Bottom panel: Density plot of the false alarm rate as a function of the multiple event 
statistic. Note that the horizontal branch with little dependency on MES is missing for SOC 9.2 as 
the bootstrap was used as a veto in TPS. 
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rejecting true transiting planets at low SNR (<9 σ) given that the large population of 
spurious TCEs evident for SOC 9.1 are not present in this SOC 9.2 data set. 
 
 

 
Figure 7. False alarm rate as a function of the bootstrap threshold for the 19,856 Q1–Q17 DR24 
TCEs, colored by KOI disposition. The vertical line at 7.1σ  represents the threshold expected for 
ZMUV Gaussian noise. 
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5.3. SOC 9.3 Q1–Q17 DR25 

Figures 8 and 9 present the false alarm rate as a function of MES for the 24,179 TCEs 
returning bootstrap results in the SOC 9.3 Q1–Q17 DR25 search. It is interesting to note 
that the ZMUV curve is a much better envelope for the band of TCEs that are also KOIs. 
Note also that this band of KOIs is tighter than those for either of the two previous data 
sets. This is largely due to changes made in the SOC 9.3 TPS codebase to improve the 
performance of the whitening filter as well as changes in the assignment of photometric 
apertures (Smith et al. 2016) and improvements in systematic error correction. These 
changes and their affect on the DR25 TCEs are documented in Twicken et al. (2016).  
 
For the SOC 9.3 DR25 results, there is much better separation of the low reliability TCEs 
in the horizontal “cloud” population from those in the band following the ZMUV curve 
compared to the SOC 9.1 TCEs. The unreliable TCEs have false alarm probabilities 
greater than approximately 10-11 while all confirmed and/or validated planets, almost all 
planet candidates, and most astrophysical false positives have log(FAR)<10-11. 
 

 
Figure 8. False alarm rate as a function of the multiple event statistic (MES) for each of the 24,179 
TCEs returning bootstrap results in the SOC 9.3 Q1–Q17 DR25 transiting planet search. The points 
are colored by the dispositions of the TCEs in NExScI Exoplanet Archive’s cumulative DR24 KOI 
table. The magenta line indicates the expected value for a ZMUV Gaussian process.  
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Figure 9. Zoom of Figure 8. Top panel: false alarm rate as a function of the MES for each of the SOC 
9.3 Q1–Q17 DR25 TCEs, colored by KOI disposition. Note that the “cloud” of high MES/high FAR 
reappears here as the bootstrap was not used as a veto in TPS for this run. Bottom panel: Density 
plot of the false alarm rate as a function of the MES. Note that the two principal populations, the 
horizontal branch with little dependency on MES and the one that is approximately enveloped by the 
expected curve for ZMUV Gaussian noise are well separated in the SOC 9.3 results with a valley 
between them at log(FAR) ≈ 10-11. 
 



KSCI-19086-004: Statistical Bootstrap Test  7/27/2016 

22 of 31 

 
Figure 10. False alarm rate as a function of the multiple event statistic (MES) for each of the 24,179 
TCEs returning bootstrap results in the Q1–Q17 DR25 transiting planet search, colored by the KOI 
disposition. The magenta line indicates the expected value for a ZMUV Gaussian process.  
 
Figure 10 shows the bootstrap false alarm rate as function of bootstrap threshold. The 
SOC 9.3 changes also reduced the number of planet candidates with bootstrap thresholds 
>10σ from 46 in SOC 9.1 (see Figure 4) and 56 in SOC 9.2 (see Figure 7) to only 13 in 
SOC 9.3. 
 
5.4. Comparison Across Data Sets 

While the results of the bootstrap analysis are similar across the three data sets, there are 
differences due in small part to the amount of data considered in each one (16 quarters of 
data vs. 17 quarters of data), and in large part to code base changes for the production of 
the light curves. In this section we discuss some of the differences between the data sets. 
 
Figure 11 shows the difference in the log of the bootstrap false alarm rates between SOC 
9.2 and SOC 9.1, colored by KOI disposition, where the 9.2 false alarm rates are 
calculated using the SOC 9.1 MES values to ensure that the comparisons are valid. For 
false alarm rates exceeding ~10-40 there is a relatively tight core of points between ~101.6 
and ~10-0.6 for the KOIs. The points are well correlated between the two data sets 
considering the differences in the code bases and the fact that results smaller than ~10-16 
are all extrapolations from fits to the upper tails of the empirical bootstrap distributions.
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Figure 11. Difference in false alarm rate for the SOC 9.2 Q1–Q17 TCEs vs. that for the SOC 9.1 Q1–
Q16 TCEs as a function of the SOC 9.1 false alarm rates for those objects that have matching 
ephemerides in the two data sets. The SOC 9.2 false alarm rates are calculated for the SOC 9.1 MES 
values to ensure a valid comparison. The SOC 9.2 false alarm rates are slightly higher than those for 
SOC 9.1, perhaps due to differences in the code bases. 
 
Figure 12 shows the difference in the log of the bootstrap false alarm rates between SOC 
9.3 and SOC 9.1, colored by KOI disposition, where the 9.3 false alarm rates are 
calculated using the SOC 9.1 MES values to ensure that the comparisons are valid. For 
false alarm rates greater than ~10-40 there is a relatively tight core of points between 
~100.5 and ~10-2 for the confirmed/validated planets, planetary candidates and 
astrophysical false positives. The SOC 9.3 results are somewhat lower than those for the 
same objects for SOC 9.1, reflecting the improvements in the flux time series and in the 
TPS algorithm due to the SOC 9.3 codebase changes.  
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Figure 12. Difference in False alarm rate for the SOC 9.3 Q1–Q17 TCEs vs. that for the SOC 9.1 Q1–
Q16 TCEs as a function of the SOC 9.1 false alarm rates for those objects that have matching 
ephemerides in the two data sets. The SOC 9.3 false alarm rates are calculated for the SOC 9.1 MES 
values to ensure a valid comparison. The SOC 9.3 false alarm rates are somewhat lower than those 
for SOC 9.1, due to the improvements in the photometric pipeline as well as in TPS. 
 

The codebase changes from SOC 9.1 to SOC 9.3 also tightened the distribution of 
bootstrap thresholds produced by the statistical bootstrap analysis. In addition, the 
median threshold dropped from 7.44 σ in SOC 9.1 to 7.24 σ in SOC 9.3, demonstrating 
the increase in sensitivity as the SOC codebase evolved. The 10th, 50th and 90th 
percentiles for the bootstrap thresholds for TCEs that were matched against 
confirmed/validated planets and astrophysical false positives are given in Table I. 
 
Table I: Summary Statistics of the Bootstrap Thresholds for KOIs 
 10th Percentile 50th Percentile 90th Percentile 
SOC 9.1 6.84 σ 7.44 σ 8.36 σ 
SOC 9.2 7.17 σ 7.51 σ 8.36 σ 
SOC 9.3 7.02 σ 7.24 σ 7.75 σ 
 

Figure 13 shows histograms of the bootstrap thresholds for KOIs for each of the data sets. 
The SOC 9.3 results show a broad upper tail, thanks to improved sensitivity in the search, 
and relaxation of the vetoes in TPS for the final run, which doubled the number of TCEs 
from 16,285 in SOC 9.1 to 34,032 in SOC 9.3.  
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Figure 13. Bootstrap thresholds for KOIs for SOC 9.1 (blue curve), SOC 9.2 (green curve) and SOC 
9.3 (red curve). 
 
 
6. Precision of the Statistical Bootstrap Results 

In this section we investigate the precision of the statistical bootstrap test by reviewing 
the results of a Monte Carlo experiment. The light curve for a typical Kepler target 
observed for all 17 quarters was replaced with a zero-mean, unit variance WGN process 
and run through TPS to generate the single event statistic time series. This process 
incorporated all gaps in the original time series in order to present as realistic a result as 
possible. The single event statistic time series for each of the 14 different pulse durations 
searched in TPS (between 1.5 and 15 hours) were then subjected to the SOC 9.3 
bootstrap analysis. The number of transits, ntransits, for each pulse duration was varied 
between 3 and 2048. A total of 100 random flux time series were generated and subjected 
to the bootstrap analysis in this manner.  
 
Figure 14 shows the bootstrap false alarm rate at 8σ as a function of the transit duration 
and the number of transits. For transit pulse durations less than ~3 hours, the false alarm 
rate is slightly higher than that expected for a fully sampled ZMUV Gaussian process, 
which would provide a log10(FAR) of -15.2. The FAR then drops gradually to the longest 
duration, perhaps reflecting the fact that there are more independent statistical tests 
conducted for shorter transits than for longer duration transits (at a given trial orbital 
period). The two smallest number of transit cases also exhibit depressed false alarm rates 
as a function of duration. For eight or more transits, the FAR at 8 σ converges to a rather 
narrow curve with a width of ~0.25 in log space. For transit durations exceeding 3 hours 
the dispersion is 2 dex. 
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Figure 14. Mean of the log of the false alarm rate at 8 σ of 100 different Monte Carlo tests as a 
function of transit duration and number of transits. The solid black line indicates the idealized false 
alarm rate at 8 σ , namely log10(6.2×10-16) = -15.206. 
 
Figure 15 shows the standard deviation in the log10(FAR) at 8 σ across all 100 Monte 
Carlo runs as a function of transit duration and number of transits. The curve for ntransits=3 
is between 1.5 and 2.6 over the full range of durations. The curves drop rapidly as a 
function of ntransits. For ntransits ≥ 8 the standard deviation of the bootstrap FAR at 8 σ is 
less than 1 dex. For ntransits ≥ 512, the scatter in the results begins increasing, reflecting 
accumulation of round off errors due to the spatial resampling that must be used in the 
bootstrap analysis to prevent spatial aliasing (see Section 3). 
 
Note that the dispersion in the mean bootstrap FAR is comparable to the scatter in Monte 
Carlo results, indicating that while the mean bootstrap FAR, does, indeed, vary 
significantly with respect to transit duration and orbital period (number of transits), the 
bias in an individual bootstrap FAR estimate is approximately the same as the 
uncertainty, for long orbital periods (ntransits < 8) and long durations (>6 hr). For these 
cases, the bootstrap FAR is likely to be biased by 1–2 dex towards smaller false alarm 
rates.  
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Figure 15. Standard deviation of the log of the false alarm rate at 8 σ of 100 different Monte Carlo 
tests as a function of transit duration and number of transits. The solid line indicates the ideal 
threshold at 7.1σ . 
 
Figure 16 shows the mean of the bootstrap threshold as a function of transit duration and 
ntransits. The shape of the curves are rather similar to those for the mean log10(FAR) in 
Figure 14. For durations longer than 3 hours and ntransits ≥8 the bootstrap threshold drops 
linearly from 7.1 σ to 6.6 σ. The curves for ntransits ≥8 are relatively tightly confined to 
within a range of ±0.03 σ. The variation across the curves is ~0.4 σ at any given transit 
pulse duration, comparable to the scatter of the results across the Monte Carlo trials. 
 
Figure 17 shows the standard deviation of the bootstrap threshold as a function of the 
transit duration and ntransits. The shape of the curves is reminiscent of those for the 
standard deviation of the log10(FAR) in Figure 14. The standard deviation of the 
threshold is below 0.5 σ for all cases, dropping rapidly from ~0.5 σ for ntransits = 3 to 
~0.2  σ for ntransits = 8. 
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Figure 16. Mean of the bootstrap threshold of 100 different Monte Carlo tests as a function of transit 
duration and number of transits. 
 

 
 

Figure 17. Standard deviation of the bootstrap threshold of 100 different Monte Carlo tests as a 
function of transit duration and number of transits. 
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The results are well behaved for transit pulse durations ≥3 hours, and for ≥8 transits. 
However, the enhanced scatter in the results for small numbers of transits should be kept 
in mind when interpreting the bootstrap results for TCEs with ntransits<8. 
 
How much of the bias structure evident in Figures 14 and 16 are due to the bootstrap, and 
how much is due to the conditioning, filtering and processing within TPS? We conducted 
a separate Monte Carlo experiment by running bivariate Gaussian multiple event 
statistics through the bootstrap algorithm directly, thereby bypassing TPS. Figure 18 
shows the behavior of the mean bootstrap FAR and threshold at 8σ as a function of the 
number of transits for this experiment along with those for the original Monte Carlo 
experiments. The log10(FAR) of the bivariate WGN process varies between -14.5 and      
-15.4, or +/-1 dex, indicating that the majority of the bias structure dependent on transit 
duration is due to the filtering and conditioning occurring inside of TPS. We interpret this 
as being due to the fact that the shorter duration transits have less data “averaged” into 
each single event statistic, and hence, are noisier than those for longer duration transits, 
and to the fact that for a finite flux time series, there are more effective independent 
statistics for shorter duration transits relative to longer duration transits. 
 

 
 

Figure 18. Mean of the bootstrap FAR of 100 different Monte Carlo tests as a function of transit 
duration and number of transits, along with that for a bivariate WGN process passed directly to the 
bootstrap algorithm (black curve with stars). 
 
Note that while these Monte Carlo experiments give some idea of the native scatter in the 
bootstrap analysis results, they do not include all the known instrumental artifacts (e.g. 
sudden pixel dropouts or rolling band image artifacts) and/or astrophysical red noise. 
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7. Bootstrap Analysis of a Single TCE 
As an illustration of how the statistical bootstrap analysis operates, Figure 19 shows a 
typical bootstrap result. The TCE used for this plot is on KIC 12158032, which has a 
transit duration of 2 hours, an orbital period of 0.578 days, and a MES of 8.48 σ. If the 
MES of the detection falls above the MES corresponding to a log10(FAP) of -13.5, then 
the boot_fap is interpolated from the CDF of the null MES constructed by the bootstrap, 
otherwise the best-fit Gaussian is used to calculate the boot_fap. In Figure 19 it is marked 
by the black star and was calculated to be 4.7×10-16. This is the FAP on the solid green 
curve corresponding to the MES of the TCE. The boot_mesthresh for this TCE is ~7.35σ 
as can be seen by finding the MES corresponding to a FAP of  ~6.24×10-13 on the best-fit 
Gaussian (indicated by the magenta diamond). The boot_mesmean is the mean of the 
best-fit Gaussian and is -0.64 for this TCE. The boot_messtd is the standard deviation of 
the best-fit Gaussian and is 1.13 for this TCE. Note that the solid red curve shows the 
CDF for a ZMUV Gaussian. The Gaussian is fitted robustly in log space using the data 
from 1×10!! to 1×10!!" to avoid the roll-off toward MES>8σ due to round off errors.  
 

 
Figure 19. The CDF of the null MES constructed by the bootstrap. This TCE is on KIC 12158032 and 
has a MES of 8.48 σ, a duration of 2 hours, and a period of 0.578 days that yielded 2,278 transits in 4 
years of data. The false alarm probability for this TCE is ~4.7×10-16, marked by the black star. The 
best-fit Gaussian had a mean of -0.64 and a standard deviation of 1.13. The magenta diamond marks 
the threshold needed to achieve the same false alarm rate of a ZMUV Gaussian with a 7.1σ threshold 
given the distribution of null MES constructed by the bootstrap.  
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